研究报告

外源Ca2+对PEG处理下转C4PEPC基因水稻光合生理的调节

展开
  • 1南京农业大学生命科学学院, 南京 210095;
    2.江苏省农业科学院粮食作物研究所, 国家水稻改良中心南京分中心, 江苏省优质水稻工程技术研究中心, 南京 210014

收稿日期: 2014-02-19

  修回日期: 2014-05-13

  网络出版日期: 2015-04-10

基金资助

国家自然科学基金(No.31371554)、江苏省自主创新基金(No.CX[(14)5004])和江苏省自然科学基金(No.BK20130708)

Photosynthetic and Physiological Regulation of C4 Phosphoenolpyruvate Carboxylase Transgenic Rice (Oryza sativa) by Exogenous Ca2+ Under Polyethylene Glycol Stress

Expand
  • 1College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
    2.Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center Rice Improvement, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Received date: 2014-02-19

  Revised date: 2014-05-13

  Online published: 2015-04-10

摘要

磷酸烯醇式丙酮酸羧化酶(PEPC)通过固定二氧化碳参与光合作用, 是关键的C4植物光合作用酶。为了揭示高光效转C4 PEPC基因水稻(Oryza sativa)对干旱胁迫的适应机理, 以高表达转C4 PEPC水稻(PC)和野生型水稻Kitaake (WT)为供试材料, 在植株的4-5叶期, 使用不同浓度外源CaCl2溶液处理, 测定在15%聚乙二醇6000 (polyethylene glycol-6000, PEG-6000)胁迫下叶片相对含水量、光合参数、内源钙总含量、叶片总蛋白激酶活性、PEPC酶活性以及相关基因表达和蛋白质含量。结果表明, 0.5 mmol∙L-1 CaCl2明显提高PC叶片相对含水量(P<0.05), 2 mmol∙L-1和10 mmol∙L-1 CaCl2则作用不显著, 对WT则影响不显著。不同浓度钙处理对PEG处理PC的净光合速率影响不显著, 而通过维持气孔导度减少水分胁迫。内源总钙浓度的数据显示, 在PEG6000处理下, PC具有维持稳定内源Ca2+浓度的能力, 过高浓度(10 mmol∙L-1 CaCl2)钙处理反而降低了PEPC酶活性、PEPC基因表达和可溶性蛋白的含量。

本文引用格式

刘小龙, 李霞, 钱宝云 . 外源Ca2+对PEG处理下转C4PEPC基因水稻光合生理的调节[J]. 植物学报, 2015 , 50(2) : 206 -216 . DOI: 10.3724/SP.J.1259.2015.00206

Abstract

Phosphoenolpyruvate carboxylase (PEPC), a key C4 photosynthetic enzyme, participates in photosynthesis by fixing CO2 in C4 plants. In this study, we aimed to understand the drought-tolerance mechanism of C4 PEPC transgenic rice with high photosynthetic efficiency. C4 PEPC transgenic rice plants (PC) and wild-type rice plants (WT) at the 4-5 leaf age were used. Using 15% polyethylene glycol-6000 (PEG) treatment for different days, we investigated leaf relative water content (RWC), net photosynthetic rate (Pn), protein kinase activity, PEPCase activity and PEPC gene expression in leaves of rice plants with different concentrations of CaCl2. RWC of PC leaf was enhanced with 0.5 mmol∙L-1 CaCl2 (P<0.05) except under 2 and 10 mmol∙L-1 CaCl2, and factors in the WT were unaffected by exogenous CaCl2. Pn of PC was not affected by CaCl2 treatments combined with 15% PEG. Moreover, PC showed an certain capacity for maintenance and stabilization of endogenous Ca2+ level in leaves under PEG treatment: with higher exogenous Ca2+ treatment (10 mmol∙L-1), PEPCase activity, PEPC expression and soluble protein were all decreased in PC leaves.

参考文献

1 陈平波, 李霞 (2012). 低浓度NO对高表达转玉米C 4 型 PEPC 水稻光合的促进. 植物研究 32, 402-409.
2 丁在松, 周宝元, 孙雪芳, 赵明 (2012). 干旱胁迫下 PEPC 过表达增强水稻的耐强光能力. 作物学报 38, 285-292.
3 董秀梅, 晁青, 王柏臣 (2013). 植物磷酸烯醇式丙酮酸羧激酶(PEPCK)研究进展. 植物学报 48, 320-328.
4 姬飞腾, 李楠, 邓馨 (2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报 33, 926-935.
5 蒋明敏, 徐晟, 夏冰, 彭峰, 汪仁 (2012). 干旱胁迫下外源氯化钙、水杨酸和一氧化氮对石蒜抗旱性的影响. 植物生理学报 48, 909-916.
6 焦德茂, 匡廷云, 李霞, 戈巧英, 黄雪清, 郝乃斌, 白克智 (2003). 转 PEPC 基因水稻具有初级CO 2 浓缩机制生理特点. 中国科学(C辑) 33, 33-39.
7 李青云, 葛会波, 胡淑明, 王惠英 (2006). 钠盐和钙盐胁迫对草莓光合作用的影响. 西北植物学报 26, 1713-1717.
8 李霞, 焦德茂, 戴传超 (2005). 转 PEPC 基因水稻对光氧化逆境的响应. 作物学报 31, 408-413.
9 李霞, 吴爽, 焦德茂, 王守海, 李成荃, 古森本 (2001). 转 PEPC 基因水稻的选育. 江苏农业学报 17, 143-147.
10 杨彩琴, 刘伟娜, 赵志弘, 吴海燕 (1998). 血清钙的甲基百里香酚蓝测定法. 光谱学与光谱分析 18, 485-487.
11 周宝元, 丁在松, 赵明 (2011). PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报 37, 112-118.
12 Alleva K, Niemietz CM, Sutka M, Maurel C, Parisi M, Tyerman SD, Amodeo G (2006). Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57, 609-621.
13 Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197, 177-185.
14 Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248- 254.
15 Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103, 551-560.
16 Chen PB, Li X, Huo K, Wei XD, Dai CC, Lv CG (2014). Promotion of photosynthesis in transgenic rice over- expressing of maize C 4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol 171, 458-466.
17 Cousins AB, Baroli I, Badger MR, Ivakov A, Lea PJ, Leegood RC, von Caemmerer S (2007). The role of phosphoenolpyruvate carboxylase during C 4 photosyn- thetic isotope exchange and stomatal conductance. Plant Physiol 145, 1006-1017.
18 Dodd AN, Kudla J, Sanders D (2010). The language of calcium signaling. Annu Rev Plant Biol 61, 593-620.
19 Fu YL, Zhang GB, Lv XF, Guan Y, Yi HY, Gong JM (2013). Arabidopsis histone methylase CAU1/PRMT5/SKB1 acts as an epigenetic suppressor of the calcium signaling gene CAS to mediate stomatal closure in response to extracellular calcium. Plant Cell 25, 2878-2891.
20 Fukayama H, Hatch MD, Tamai T, Tsuchida H, Sudoh S, Furbank RT, Miyao M (2003). Activity regulation and physiological impacts of maize C 4 -specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res 77, 227-239.
21 Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002). The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30, 71-81.
22 Giglioli-Guivarc'h N, Pierre JN, Brown S, Chollet R, Vidal J, Gadal P (1996). The light-dependent transduction pathway controlling the regulatory phosphorylation of C 4 phosphoenolpyruvate carboxylase in protoplasts from digitaria sanguinalis. Plant Cell 8, 573-586.
23 Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (1999). Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20, 333-342.
24 Hirschi KD (2004). The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136, 2438- 2442.
25 Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P (2002). Improvement of drought tole- rance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C 4 -PEPC. Biochimie 84, 1127-1135.
26 Karki S, Rizal G, Quick WP (2013). Improvement of photosynthesis in rice ( Oryza sativa L.) by inserting the C 4 pathway. Rice 6, 28.
27 Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17, 76-80.
28 Li X, Cao K, Wang C, Sun ZW, Yan LN (2010). Variation of photosynthetic tolerance of rice cultivars ( Oryza sativa L.) to chilling temperature in the light. Afr J Biotech 9, 1325-1337.
29 Li X, Wang C, Ren CG (2011). Effects of 1-butanol, neomy- cin, and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biotech 10, 17466-17476.
30 Lindberg S, Kader A, Yemelyanov V (2012). Calcium signaling in plant cells under environmental stress. In: Ahmad P, Prasad MNV, eds. Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. New York: Springer. pp. 325-360.
31 Monreal JA, Arias-Baldrich C, Pérez-Montaño F, Gandullo J, Echevarría C, García-Mauriño S (2013a). Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. Planta 237, 1401-1413.
32 Monreal JA, Arias-Baldrich C, Tossi V, Feria AB, Rubio- Casal A, García-Mata C, Lamattina L, García-Mauriño S (2013b). Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. Planta 238, 859-869.
33 Ren CG, Li X, Liu XL, Wei XD, Dai CC (2014). Hydrogen peroxide regulated photosynthesis in C 4 - PEPC transgenic rice. Plant Physiol Biochem 74, 218-229.
34 Schägger H (2006). Tricine-SDS-PAGE. Nat Protoc 1, 16-22.
35 Silva JV, de Lacerda CF, da Costa PHA, Enéas-Filho J, Gomes-Filho E, Prisco JT (2003). Physiological res- ponses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl 2 . Braz J Plant Physiol 15, 99-105.
36 Vidal J, Chollet R (1997). Regulatory phosphorylation of C 4 PEP carboxylase. Trends Plant Sci 2, 230-237.
37 Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2012). Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63, 177-190.
38 White PJ, Broadley MR (2003). Calcium in plants. Ann Bot 92, 487-511.
39 Wu Y, Liu XF, Wang WF, Zhang SQ, Xu BC (2012). Calcium regulates the cell-to-cell water flow pathway in maize roots during variable water conditions. Plant Physiol Biochem 58, 212-219.
40 Xu C, Li X, Zhang L (2013). The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PLoS One 8, e68214.
41 Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder JI (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell. EMBO J 30, 1645-1658.
42 Zhang S, Klessig DF (1997). Salicylic acid activates a 48 kDa MAP kinase in tobacco. Plant Cell 9, 809-824.
43 Zhang SQ, Liu YD (2001). Activation of salicylic acid- induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13, 1877-1889.
44 Zhu GH, Kurek I, Liu L (2010). Engineering photosynthetic enzymes involved in CO 2 -assimilation by gene shuffling. In: Rebeiz CA, Benning C, Bohnert HJ, Daniell H, Hoober JK, Lichtenthaler HK, Portis AR, Tripathy BC, eds. The Chloroplast: Basics and Applications. Netherlands: Sprin- ger. pp. 307-322.
文章导航

/