蛋白质翻译后修饰在ABA信号转导中的作用
收稿日期: 2018-10-18
录用日期: 2019-01-02
网络出版日期: 2019-01-16
基金资助
国家自然科学基金(31870251和农业部转基因专项No.2016ZX08009-003-002)
Role of Post-translational Modification of Proteins in ABA Signaling Transduction
Received date: 2018-10-18
Accepted date: 2019-01-02
Online published: 2019-01-16
张静,侯岁稳 . 蛋白质翻译后修饰在ABA信号转导中的作用[J]. 植物学报, 2019 , 54(3) : 300 -315 . DOI: 10.11983/CBB18217
Abscisic acid (ABA) plays a key role in the growth, development and stress condition of plants. The process of plant response to ABA is completed by signal recognition, transduction, and response cascades. The core ABA signaling pathway consists of receptor RCAR/PYR/PYLs, phosphatase PP2Cs, kinase SnRK2s, and transcription factors and ion channel proteins. Post-translational modifications (PTMs) of proteins such as phosphorylation, ubiquitination, small ubi- quitin-related modifier (SUMOylation) and redox modifications plays an important role in ABA signaling. This review focused on the role of modifications in the core ABA signaling pathway.
Key words: ABA; phosphorylation; PTMs; redox; SUMOylation; ubiquitination
[1] | 韩丹璐, 赖建彬, 阳成伟 ( 2018). SUMO E3连接酶在植物生长发育中的功能研究进展. 植物学报 53, 175-184. |
[2] | 王宇, 何奕騉 ( 2017). 一氧化氮介导蛋白质亚硝基化与甲基化协调植物非生物胁迫的分子机制. 植物学报 52, 681-684. |
[3] | 伍静辉, 谢楚萍, 田长恩, 周玉萍 ( 2018). 脱落酸调控种子休眠和萌发的分子机制. 植物学报 53, 542-555. |
[4] | Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O ( 2015). S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6, 8669. |
[5] | Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL ( 2012). Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158, 970-980. |
[6] | Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A ( 2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4, 63. |
[7] | Augustine RC, Vierstra RD ( 2018). SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol 45, 143-154. |
[8] | Batisti? O, Rehers M, Akerman A, Schlücking K, Steinhorst L, Yalovsky S, Kudla J ( 2012). S-acylation- dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Res 22, 1155-1168. |
[9] | Begara-Morales JC, Chaki M, Valderrama R, Sanchez- Calvo B, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB ( 2018). Nitric oxide buffering and conditional nitric oxide release in stress response. J Exp Bot 69, 3425-3438. |
[10] | Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL ( 2016). FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28, 2291-2311. |
[11] | Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier- Brygoo H, Thomine S ( 2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141, 1316-1327. |
[12] | Belkhadir Y, Jaillais Y ( 2015). The molecular circuitry of brassinosteroid signaling. New Phytol 206, 522-540. |
[13] | Bhatnagar N, Min MK, Choi EH, Kim N, Moon SJ, Yoon I, Kwon T, Jung KH, Kim BG ( 2017). The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10. Plant Mol Biol 93, 389-401. |
[14] | Brady SM, Sarkar SF, Bonetta D, McCourt P ( 2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34, 67-75. |
[15] | Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjarvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI ( 2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109, 10593-10598. |
[16] | Brugiére N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE ( 2017). Overexpression of RING domain E3 ligase ZmXERICO1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiol 175, 1350-1369. |
[17] | Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez- Guzman M, Sayas E, Munoz-Bertomeu J, Iba?ez C, Serrano R, Rodriguez PL ( 2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J 80, 1057-1071. |
[18] | Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, Pan S, Dong R, Tang G, Barajas-Lopez JDD, Fujii H, Wang X ( 2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci USA 111, 9651-9656. |
[19] | Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J ( 2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8, ra89. |
[20] | Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H ( 2016). SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Mol Biol 92, 143-159. |
[21] | Castro PH, Tavares RM, Bejarano ER, Azevedo H ( 2012). SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69, 3269-3283. |
[22] | Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH ( 2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966. |
[23] | Chen HH, Qu L, Xu ZH, Zhu JK, Xue HW ( 2018). EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/PYLs in Arabidopsis. Mol Plant 11, 706-719. |
[24] | Chen L, Lee JH, Weber H, Tohge T, Witt S, Roje S, Fernie AR, Hellmann H ( 2013a) . Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. Plant Cell 25, 2253-2264. |
[25] | Chen YT, Liu H, Stone S, Callis J ( 2013b) . ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J 75, 965-976. |
[26] | Cheng C, Wang Z, Ren Z, Zhi L, Yao B, Su C, Liu L, Li X ( 2017). SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 13, e1006947. |
[27] | Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP ( 2012). Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol 158, 363-375. |
[28] | Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY ( 2005). Arabidopsis calcium- dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139, 1750-1761. |
[29] | Cohen P ( 2002). The origins of protein phosphorylation. Nat Cell Biol 4, E127-E130. |
[30] | Dai M, Xue Q, McCray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, Deng XW, Wang H ( 2013). The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25, 517-534. |
[31] | Dong T, Park Y, Hwang I ( 2015). Abscisic acid: biosynthesis, inactivation, homoeostasis and signaling. Essays Biochem 58, 29-48. |
[32] | Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF ( 2014). Arabidopsis RAV1 transcription factor, phosphory- lated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80, 654-668. |
[33] | Finkelstein R ( 2013). Abscisic acid synthesis and response. Arabidopsis Book 11, e0166. |
[34] | Fujii H, Verslues PE, Zhu JK ( 2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494. |
[35] | Fujii H, Zhu JK ( 2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106, 8380-8385. |
[36] | Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K ( 2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124, 509-525. |
[37] | Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K ( 2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50, 2123-2132. |
[38] | Fujita Y, Yoshida T, Yamaguchi-Shinozaki K ( 2013). Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147, 15-27. |
[39] | Garcia ME, Lynch T, Peeters J, Snowden C, Finkelstein R ( 2008). A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol Biol 67, 643-658. |
[40] | Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R ( 2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca 2+ affinities . Proc Natl Acad Sci USA 107, 8023-8028. |
[41] | Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R ( 2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106, 21425-21430. |
[42] | Han SK, Sang Y, Rodrigues A, Biol F, Wu MF, Rodriguez PL, Wagner D ( 2012). The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24, 4892-4906. |
[43] | He JX, Gendron JM, Yang Y, Li J, Wang ZY ( 2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99, 10185-10190. |
[44] | Himmelbach A, Hoffmann T, Leube M, H?hener B, Grill E ( 2002). Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21, 3029-3038. |
[45] | H?rak H, Sierla M, T?ldsepp K, Wang C, Wang YS, Nuhkat M, Valk E, Pechter P, Merilo E, Saloj?rvi J, Overmyer K, Loog M, Brosché M, Schroeder JI, Kangasj?rvi J, Kollist H ( 2016). A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28, 2493-2509. |
[46] | Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK ( 2016). Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genet 12, e1005835. |
[47] | Hu R, Zhu Y, Shen G, Zhang H ( 2014). TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE 5-regulated gene expression in Arabidopsis. Plant Physiol 164, 721-734. |
[48] | Hu Y, Yu D ( 2014). BRASSINOSTEROID INSENSITIVE 2 interacts with ABSCISIC ACID INSENSITIVE 5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26, 4394-4408. |
[49] | Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z ( 2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24, 2546-2561. |
[50] | Hua Z, Vierstra RD ( 2011). The cullin-RING ubiquitin- protein ligases. Annu Rev Plant Biol 62, 299-334. |
[51] | Huizinga DH, Denton R, Koehler KG, Tomasello A, Wood L, Sen SE, Crowell DN ( 2010). Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. Mol Plant 3, 143-155. |
[52] | Humphrey SJ, James DE, Mann M ( 2015). Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26, 676-687. |
[53] | Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V ( 2014). Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728. |
[54] | Jensen ON ( 2006). Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7, 391-403. |
[55] | Jin D, Wu M, Li B, Bücker B, Keil P, Zhang S, Li J, Kang D, Liu J, Dong J, Deng XW, Irish V, Wei N ( 2018). The COP9 signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5. PLoS Genet 14, e1007237. |
[56] | Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG ( 2012a). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63, 1013-1024. |
[57] | Kim JH, Kim WT ( 2013). The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162, 1733-1749. |
[58] | Kim TH, B?hmer M, Hu H, Nishimura N, Schroeder JI ( 2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca 2+ signaling . Annu Rev Plant Biol 61, 561-591. |
[59] | Kim TW, Michniewicz M, Bergmann DC, Wang ZY ( 2012b). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482, 419-422. |
[60] | Ko JH, Yang SH, Han KH ( 2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47, 343-355. |
[61] | Kong L, Cheng J, Zhu Y, Ding Y, Meng J, Chen Z, Xie Q, Guo Y, Li J, Yang S, Gong Z ( 2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun 6, 8630. |
[62] | Kulich I, Pe?enková T, Sekere? J, Smetana O, Fendrych M, Foissner I, H?ftberger M, ?arsky V ( 2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14, 1155-1165. |
[63] | Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K ( 2016). Overexpression of AtABCG25 enhan-ces the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci 251, 75-81. |
[64] | Kurup S, Jones HD, Holdsworth MJ ( 2000). Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21, 143-155. |
[65] | Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P ( 2011). MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 21, 1116-1128. |
[66] | Lee HG, Seo PJ ( 2016). The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signaling by promoting protein turnover of MYB96. Nat Commun 7, 12525. |
[67] | Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW ( 2010). DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732. |
[68] | Lee K, Lee HG, Yoon S, Kim HU, Seo PJ ( 2015). The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE 4 in the control of seed germination. Plant Physiol 168, 677-689. |
[69] | Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I ( 2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126, 1109-1120. |
[70] | Li D, Zhang L, Li X, Kong X, Wang X, Li Y, Liu Z, Wang J, Li X, Yang Y ( 2018). AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signaling in Arabidopsis. Plant Cell Environ 41, 231-244. |
[71] | Li F, Li M, Wang P, Cox JrKL, Duan L, Dever JK, Shan L, Li Z, He P ( 2017). Regulation of cotton ( Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 215, 1462-1475. |
[72] | Li Y, Zhang L, Li D, Liu Z, Wang J, Li X, Yang Y ( 2016). The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signaling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ 39, 571-582. |
[73] | Liang S, Lu K, Wu Z, Jiang SC, Yu YT, Bi C, Xin Q, Wang XF, Zhang DP ( 2015). A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signaling in response to abscisic acid. J Exp Bot 66, 6355-6369. |
[74] | Lim CW, Baek W, Lee SC ( 2017). The pepper RING-type E3 ligase CaAIRF1 regulates ABA and drought signaling via CaADIP1 protein phosphatase degradation. Plant Phy-siol 173, 2323-2339. |
[75] | Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J ( 2012). Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1. Nat Com-mun 3, 752. |
[76] | Lin Q, Wu F, Sheng P, Zhang Z, Zhang X, Guo X, Wang J, Cheng Z, Wang J, Wang H, Wan J ( 2015). The SnRK2-APC/C (TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nat Commun 6, 7981. |
[77] | Linster E, Stephan I, Bienvenut WV, Maple-Gr?dem J, Myklebust LM, Huber M, Reichelt M, Sticht C, M?ller SG, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M ( 2015). Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 6, 7640. |
[78] | Liu F, Wang X, Su M, Yu M, Zhang S, Lai J, Yang C, Wang Y ( 2015). Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biol 15, 225. |
[79] | Liu H, Stone SL ( 2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22, 2630-2641. |
[80] | Lois LM, Lima CD, Chua NH ( 2003). Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359. |
[81] | Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH ( 2003). AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17, 410-418. |
[82] | Lozano-Juste J, León J ( 2010). Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152, 891-903. |
[83] | Luo J, Shen G, Yan J, He C, Zhang H ( 2006). AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J 46, 649-657. |
[84] | Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ ( 2001). Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382-1385. |
[85] | Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL ( 2013). Arabidopsis CIPK26 interacts with KEG, components of the ABA signaling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64, 2779-2791. |
[86] | Lyzenga WJ, Sullivan V, Liu H, Stone SL ( 2017). The kinase activity of calcineurin B-like interacting protein kinase 26 (CIPK26) influences its own stability and that of the ABA-regulated ubiquitin ligase, keep on going (KEG). Front Plant Sci 8, 502. |
[87] | Ma QJ, Sun MH, Lu J, Liu YJ, You CX, Hao YJ ( 2017). An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. Plant Cell Environ 40, 2207-2219. |
[88] | Ma T, Yoo MJ, Zhang T, Liu L, Koh J, Song WY, Harmon AC, Sha W, Chen S ( 2018). Characterization of thiol-based redox modifications of Brassica napus SNF1-related protein kinase 2.6-2C. FEBS Open Biol 8, 628-645. |
[89] | Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E ( 2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068. |
[90] | Merilo E, Jalakas P, Laanemets K, Mohammadi O, H?rak H, Kollist H, Brosché M ( 2015). Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8, 1321-1333. |
[91] | Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP ( 2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18, 2749-2766. |
[92] | Miricescu A, Goslin K, Graciet E ( 2018). Ubiquitylation in plants: signaling hub for the integration of environmental signals. J Exp Bot 69, 4511-4527. |
[93] | Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM ( 2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106, 5418-5423. |
[94] | Mulekar JJ, Huq E ( 2014). Expanding roles of protein kinase CK2 in regulating plant growth and development. J Exp Bot 65, 2883-2893. |
[95] | Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ ( 2013). Nitric oxide in plants: an assessment of the current state of knowledge. AOB Plants 5, pls052. |
[96] | Nagashima Y, von Schaewen A, Koiwa H ( 2018). Function of N-glycosylation in plants. Plant Sci 274, 70-79. |
[97] | Ng LM, Soon FF, Zhou XE, West GM, Kovach A, Suino-Powell KM, Chalmers MJ, Li J, Yong EL, Zhu JK, Griffin PR, Melcher K, Xu HE ( 2011). Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc Natl Acad Sci USA 108, 21259-21264. |
[98] | Pandey S, Nelson DC, Assmann SM ( 2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136-148. |
[99] | Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, Lee SY, Bohnert HJ, Yun DJ ( 2010). Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33, 1923-1934. |
[100] | Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Sch-roeder JI, Volkman BF, Cutler SR ( 2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. |
[101] | Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL ( 2016). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9, 136-147. |
[102] | Qi J, Song CP, Wang B, Zhou J, Kangasj?rvi J, Zhu JK, Gong Z ( 2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60, 805-826. |
[103] | Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S ( 2009). Identification of a novel E3 ubiquitin ligase that is required for suppression of pre mature senescence in Arabidopsis. Plant J 59, 39-51. |
[104] | Rosenberger CL, Chen J ( 2018). To grow or not to grow: TOR and SnRK2 coordinate growth and stress response in Arabidopsis. Mol Cell 69, 3-4. |
[105] | Saruhashi M, Ghosh TK, Arai K, Ishizaki Y, Hagiwara K, Komatsu K, Shiwa Y, Izumikawa K, Yoshikawa H, Umezawa T, Sakata Y, Takezawa D ( 2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci USA 112, E6388-E6396. |
[106] | Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N ( 2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424, 439-448. |
[107] | Seo DH, Ahn MY, Park KY, Kim EY, Kim WT ( 2016). The N-terminal UND motif of the Arabidopsis U-box E3 ligase PUB18 is critical for the negative regulation of ABA- mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit Exo70B1. Plant Cell 28, 2952-2973. |
[108] | Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW ( 2014). ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711. |
[109] | Shang Y, Dai C, Lee MM, Kwak JM, Nam KH ( 2016). BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Mol Plant 9, 447-460. |
[110] | Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP ( 2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823-826. |
[111] | Singh D, Laxmi A ( 2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6, 895. |
[112] | Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM ( 2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982-2986. |
[113] | Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A ( 2017). Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J 92, 1031-1043. |
[114] | Srivastava AK, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A ( 2016). SUMO is a critical regulator of salt stress responses in rice. Plant Physiol 170, 2378-2391. |
[115] | Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J ( 2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428. |
[116] | Takahashi S, Monda K, Higaki T, Hashimoto-Sugimoto M, Negi J, Hasezawa S, Iba K ( 2017a). Differential effects of phosphatidylinositol 4-kinase (PI4K) and 3-kinase (PI3K) inhibitors on stomatal responses to environmental signals. Front Plant Sci 8, 677. |
[117] | Takahashi Y, Ebisu Y, Shimazaki KI ( 2017b). Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. Plant Physiol 174, 815-822. |
[118] | Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki KI ( 2016). Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. Plant J 87, 559-567. |
[119] | Tan W, Zhang D, Zhou H, Zheng T, Yin Y, Lin H ( 2018). Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genet 14, e1007336. |
[120] | Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L ( 2016). MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28, 2161-2177. |
[121] | Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H, Bai F, Zhang P, Zhu H, He Y, Luo S, Li L, Luan S ( 2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 6, 6057. |
[122] | Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K ( 2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51, 1821-1839. |
[123] | Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K ( 2009). Type 2C protein phosphatases directly regulate abscisic acid-activated pro-tein kinases in Arabidopsis. Proc Natl Acad Sci USA 106, 17588-17593. |
[124] | Umezawa T, Takahashi F, Shinozaki K ( 2014). Phosphory- lation networks in the abscisic acid signaling pathway. Enzymes 35, 27-56. |
[125] | Vandelle E, Delledonne M ( 2011). Peroxynitrite formation and function in plants. Plant Sci 181, 534-539. |
[126] | Vert G, Walcher CL, Chory J, Nemhauser JL ( 2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA 105, 9829-9834. |
[127] | Vilela B, Nájar E, Lumbreras V, Leung J, Pagès M ( 2015). Casein kinase 2 negatively regulates abscisic acid-activated SnRK2s in the core abscisic acid-signaling module. Mol Plant 8, 709-721. |
[128] | Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S ( 2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8, 161. |
[129] | Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates III JR, Schroeder JI ( 2015). Identification of open stomata1- interacting proteins reveals interactions with sucrose non- fermenting1-related protein kinases 2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol 169, 760-779. |
[130] | Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X ( 2018a). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11, 315-325. |
[131] | Wang H, Wang X ( 2018). GSK3-like kinases are a class of positive components in the core ABA signaling pathway. Mol Plant 11, 761-763. |
[132] | Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK ( 2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S- nitrosylation of OST1. Proc Natl Acad Sci USA 112, 613-618. |
[133] | Wang P, Du Y, Li Y, Ren D, Song CP ( 2010a). Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22, 2981-2998. |
[134] | Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK ( 2018b). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69, 100-112. |
[135] | Wang Q, Qu GP, Kong X, Yan Y, Li J, Jin JB ( 2018c). Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development. J Integr Plant Biol 60, 924-937. |
[136] | Wang X, Guo C, Peng J, Li C, Wan F, Zhang S, Zhou Y, Yan Y, Qi L, Sun K, Yang S, Gong Z, Li J ( 2018d). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytol 221, 341-355. |
[137] | Wang XJ, Zhu SY, Lu YF, Zhao R, Xin Q, Wang XF, Zhang DP ( 2010b). Two coupled components of the mitogen- activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction. Plant Cell Physiol 51, 754-766. |
[138] | Weng JK, Ye M, Li B, Noel JP ( 2016). Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881-893. |
[139] | Withers J, Dong X ( 2017). Post-translational regulation of plant immunity. Curr Opin Plant Biol 38, 124-132. |
[140] | Wu Q, Zhang X, Peirats-Llobet M, Belda-Palazon B, Wang X, Cui S, Yu X, Rodriguez PL, An C ( 2016). Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178-2196. |
[141] | Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M ( 2017). Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 591, 3625-3636. |
[142] | Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K ( 2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 ki- nases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38, 35-49. |
[143] | Youn JH, Kim TW ( 2015). Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8, 552-565. |
[144] | Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q ( 2016a). ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant 9, 1570-1582. |
[145] | Yu F, Wu Y, Xie Q ( 2015). Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci 20, 569-575. |
[146] | Yu F, Wu Y, Xie Q ( 2016b). Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant 9, 21-33. |
[147] | Yu F, Xie Q ( 2017). Non-26S proteasome endomembrane trafficking pathways in ABA signaling. Trends Plant Sci 22, 976-985. |
[148] | Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q ( 2015a). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN 1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27, 214-227. |
[149] | Zhang L, Li X, Li D, Sun Y, Li Y, Luo Q, Liu Z, Wang J, Li X, Zhang H, Lou Z, Yang Y ( 2018). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov 4, 30. |
[150] | Zhang RF, Guo Y, Li YY, Zhou LJ, Hao YJ, You CX ( 2016). Functional identification of MdSIZ1 as a SUMO E3 ligase in apple. J Plant Physiol 198, 69-80. |
[151] | Zhang S, Qi Y, Liu M, Yang C ( 2013). SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana. J Integr Plant Biol 55, 83-95. |
[152] | Zhang S, Zhuang K, Wang S, Lv J, Ma N, Meng Q ( 2017). A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. J Integr Plant Biol 59, 102-117. |
[153] | Zhang T, Zhu M, Song WY, Harmon AC, Chen S ( 2015b). Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. Biochim Biophys Acta 1854, 156-165. |
[154] | Zhang X, Garreton V, Chua NH ( 2005). The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19, 1532-1543. |
[155] | Zhao J, Zhao L, Zhang M, Zafar SA, Fang J, Li M, Zhang W, Li X ( 2017). Arabidopsis E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation. Int J Mol Sci 18, 1841. |
[156] | Zheng Y, Schumaker KS, Guo Y ( 2012). Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc Natl Acad Sci USA 109, 12822-12827. |
[157] | Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG ( 2015). SOS2-LIKE PROTEIN KINASE 5, an SNF1-RELATED PROTEIN KINASE 3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE 5. Plant Physiol 168, 659-676. |
[158] | Zhuang X, Cui Y, Gao C, Jiang L ( 2015). Endocytic and autophagic pathways crosstalk in plants. Curr Opin Plant Biol 28, 39-47. |
[159] | Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L ( 2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought resistance related genes. Plant Physiol 171, 2810-2825. |
/
〈 | 〉 |