专题论坛

CRISPR/Cas9系统在植物基因组编辑中技术改进与创新的研究进展

展开
  • 山东农业大学农学院, 泰安 271018

收稿日期: 2018-07-02

  录用日期: 2018-08-09

  网络出版日期: 2018-12-07

基金资助

国家重点研发计划(2017YFC1702705、山东省现代农业产业技术体系No.SDAIT-20-04和山东省重点研发计划No.2017CXGC1302)

Recent Progress in Evolutionary Technology of CRISPR/Cas9 System for Plant Genome Editing

Expand
  • College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

Received date: 2018-07-02

  Accepted date: 2018-08-09

  Online published: 2018-12-07

摘要

CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术, 可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深, 其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理, 总结了近几年对该技术进行优化与改进的研究进展, 包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控, 以期为深入开展这一领域的研究提供参考。

本文引用格式

苏钺凯,邱镜仁,张晗,宋振巧,王建华 . CRISPR/Cas9系统在植物基因组编辑中技术改进与创新的研究进展[J]. 植物学报, 2019 , 54(3) : 385 -395 . DOI: 10.11983/CBB18151

Abstract

CRISPR/Cas9 genome editing is used for precisely modifying the genome, enabling nucleotide insertion, deletion, or DNA fragment replacement in targeted gene(s). With more understanding of the CRISPR/Cas9 system, this technology has been widely applied in research, agriculture, medical treatment and other fields. This article briefly introduces the discovery and working principle of the CRISPR/Cas9 genome-editing technology, and summarizes the research progress in optimizing and improving the technology in recent years, including improving the gene editing efficiency, the range expansion of gene editing, base editing and multigene editing, the safety enhancement of genome editing, replacing gene fragments and transcriptional regulation of targeted genes, to provide references for thorough research work in this area.

参考文献

[1] 李红, 谢卡斌 ( 2017). 植物CRISPR基因组编辑技术的新进展. 生物工程学报 33, 1700-1711.
[2] 冉毅东, 梁振, 张毅, 高彩霞 ( 2017). 植物基因组编辑试剂材料的导入及转化系统的研究现状及前景. 中国科学: 生命科学 47, 1159-1176.
[3] 王影, 李相敢, 邱丽娟 ( 2018). CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展. 植物学报 53, 528-541.
[4] Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart Jr CN ( 2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510-1520.
[5] Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M ( 2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19, 1.
[6] Baazim H ( 2014). RNA-guided transcriptional regulation in plants via dCas9 chimeric proteins. Ph.D. thesis. Thuwal, Kingdom of Saudi Arabia: King Abdullah University of Science and Technology. pp. 32-48.
[7] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P ( 2007). Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
[8] Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J ( 2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
[9] Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW ( 2004). Gene targeting in stem cells from individuals with Osteogenesis imperfecta. Science 303, 1198-1201.
[10] Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H ( 2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labelling. Cell Res 26, 254-257.
[11] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F ( 2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
[12] Corrigan-Curay J, O’Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D, Sadelain M, Scharenberg AM, VON Kalle C, Zhang F, Jambou R, Rosenthal E, Hassani M, Singh A, Porteus MH ( 2015). Genome editing technologies: defining a path to clinic: genomic editing: establishing preclinical toxicology standards, Bethesda, Maryland 10 June 2014. Mol Ther 23, 796.
[13] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E ( 2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
[14] Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S ( 2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400.
[15] Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R ( 2018). Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120.
[16] Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandra-segaran S ( 2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33, 5978-5990.
[17] Endo M, Mikami M, Toki S ( 2015). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56, 41.
[18] Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F ( 2018). High efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16, 1848-1857.
[19] Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK ( 2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284.
[20] Gaj T, Gersbach CA, Barbas III CF ( 2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome enginee-
[21] ring.Trends Biotechnol 31, 397-405.
[22] Gasiunas G, Barrangou R, Horvath P, Siksnys V ( 2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109, E2579-E2586.
[23] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR ( 2017). Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature 551, 464-471.
[24] He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y ( 2018). Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11, 1210-1213.
[25] Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH ( 2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33, 985-989.
[26] Horvath P, Romero DA, Co?té-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R ( 2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401.
[27] Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR ( 2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63.
[28] Hu X, Meng X, Liu Q, Li J, Wang K ( 2017 a). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16, 292-297.
[29] Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K ( 2016). Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9, 943-945.
[30] Hu X, Wang C, Liu Q, Fu Y, Wang K ( 2017 b). Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44, 71-73.
[31] Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS ( 2016). Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleo proteins. Nat Biotechnol 34, 807-808.
[32] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A ( 1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433.
[33] Jansen R, van Embden JD, Gaastra W, Schouls LM ( 2002). Identification of a novel family of sequence repeats among prokaryotes. OMICS 6, 23-33.
[34] Jiang F, Doudna JA ( 2017). CRISPR-Cas9 structures and mechanisms. Ann Rev Biophy 46, 505-529.
[35] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E ( 2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
[36] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J ( 2013). RNA-programmed genome editing in human cells. eLife 2, e00471.
[37] Kai H, Tao X, Yuan F, Dong W, Zhu JK ( 2018). Precise A·T to G·C base editing in the rice genome. Mol Plant 11, 627-630.
[38] Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH ( 2016). Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810.
[39] Kweon J, Jang AH, Kim DE, Yang JW, Yoon M, Rim SH, Kim JS, Kim Y ( 2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun 8, 1723.
[40] Le Blanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y ( 2017). Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93, 377-386.
[41] Li C, Zong Y, Wang YP, Jin S, Zhang DB, Song QN, Zhang R, Gao CX ( 2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19, 59.
[42] Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C ( 2016). Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2, 16139.
[43] Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J ( 2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688-691.
[44] Li T, Liu B, Spalding MH, Weeks DP, Yang B ( 2012). High-efficiency talen-based gene editing produces disease-resistant rice. Nat Biotechnol 30, 390-392.
[45] Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ ( 2015). CRISPR/Cas9- mediated gene editing in human tripronuclear zygotes. Prot Cell 6, 363-372.
[46] Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C ( 2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleo proteins. Nat Protoc 13, 413-430.
[47] Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y ( 2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act 2.0 and mTALE-Act systems. Mol Plant 11, 245-256.
[48] Lu HP, Liu SM, Xu SL, Chen WY, Zhou X, Tan YY, Huang JZ, Shu QY ( 2017). CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol J 15, 1371-1373.
[49] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG ( 2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8, 1274-1284.
[50] Marraffini LA, Sontheimer EJ ( 2008). CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322, 1843-1845.
[51] Meng XB, Hu XX, Liu Q, Song XG, Gao CX, Li JY, Wang KJ ( 2018). Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61, 122-125.
[52] Mikami M, Toki S, Endo M ( 2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57, 1058-1068.
[53] Miki D, Zhang W, Zeng W, Feng Z, Zhu JK ( 2018). CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9, 1967.
[54] Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ ( 2011). A tale nuclease architecture for efficient genome editing. Nat Biotechnol 29, 143-148.
[55] Mussolino C, Cathomen T ( 2013). RNA guides genome engineering. Nat Biotechnol 31, 208-209.
[56] Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S ( 2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691-693.
[57] Peng J, Wang Y, Jiang JY, Zhou XY, Song L, Wang LL, Ding C, Qin J, Liu LP, Wang WH, Liu JQ, Huang XX, Wei H, Zhang P ( 2015). Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5, 16705.
[58] Puchta H, Dujon B, Hohn B ( 1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21, 5034-5040.
[59] Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F ( 2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
[60] Redondo P, Prieto J, Mu?oz IG, Alibés A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C, Duchateau P, Paques F, Blanco FJ, Montoya G ( 2008). Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456, 107-111.
[61] Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, Lin H, Zhou H ( 2018). Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11, 623-626.
[62] Schiml S, Fauser F, Puchta H ( 2015). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80, 1139-1150.
[63] Shan JW, Gao CX ( 2015). Research progress of genome editing and derivative technologies in plants. Hereditas 37, 953-973.
[64] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C ( 2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686-688.
[65] Steinert J, Schiml S, Fauser F, Puchta H ( 2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84, 1295-1305.
[66] Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L ( 2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9, 628-631.
[67] Symington LS, Gautier J ( 2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271.
[68] Ungerer J, Pakrasi HB ( 2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6, 39681.
[69] Waltz E ( 2016). Gene-edited CRISPR mushroom escapes US regulation. Nature 532, 293.
[70] Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK ( 2017). Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10, 1007-1010.
[71] Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS ( 2015). DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat Biotechnol 33, 1162-1164.
[72] Xie K, Minkenberg B, Yang Y ( 2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
[73] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ ( 2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.
[74] Xing YY, Yang J, Ren J ( 2016). Application of CRISPR/ Cas9 mediated genome editing in farm animals. Hereditas (Beijing) 38, 217-226.
[75] Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J ( 2014). Gene targeting using the Agrobacterium tumefaciens-
[76] mediated CRISPR-Cas system in rice.Rice 7, 5.
[77] Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J ( 2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15, 713-717.
[78] Yan F, Kuang YJ, Ren B, Wang JW, Zhang DW, Lin HH, Yang B, Zhou XP, Zhou HB ( 2018). High-efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11, 631-634.
[79] Yu Z, Chen Q, Chen W, Zhang X, Mei F, Zhang P, Zhao M, Wang X, Shi N, Jackson S, Hong Y ( 2018). Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis. J Integr Plant Biol 60, 376-381.
[80] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F ( 2015). Cpf1 is a single RNA-guided Endonuclease of a Class 2 CRISPR- Cas system. Cell 163, 759-771.
文章导航

/

674-3466/bottom_cn.htm"-->