热点评

miR396-GRF模块: 水稻分子育种的新资源

  • 刘玲童 ,
  • 王台
展开
  • 中国科学院植物研究所, 植物分子生理学重点实验室, 北京 100093
* E-mail: twang@ibcas.ac.cn

收稿日期: 2016-01-25

  录用日期: 2016-02-01

  网络出版日期: 2016-03-31

miR396-GRF Modules: A New Prospective on Rice Molecular Breeding

  • Lingtong Liu ,
  • Tai Wang
Expand
  • Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 2016-01-25

  Accepted date: 2016-02-01

  Online published: 2016-03-31

摘要

籽粒大小与颖花数量是影响水稻(Oryza sativa)产量的重要因素。miR396-GRF模块在拟南芥(Arabidopsis thaliana)和水稻等植物的营养器官和花器官生长发育过程中扮演着多面角色。最近, 中国科学家在miR396-GRF模块调控水稻籽粒大小和穗粒数的分子机理研究方面取得了突破性进展。

本文引用格式

刘玲童 , 王台 . miR396-GRF模块: 水稻分子育种的新资源[J]. 植物学报, 2016 , 51(2) : 148 -151 . DOI: 10.11983/CBB16017

Abstract

Grain size and number of spikelets are major factors controlling rice yield. The miR396-GRF module plays multifaceted roles in the growth and development of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Recently, Chinese scientists have revealed novel insights into the role of miR396-GRF modules in controlling grain size and number of spikelets in rice.

参考文献

[1] Bao M, Bian H, Zha Y, Li F, Sun Y, Bai B, Chen Z, Wang J, Zhu M, Han N (2014). miR396a-mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol 55, 1343-1353.
[2] Bartel DP (2004). MicroRNAs: genomics, biogenesis, mech- anism, and function. Cell 116, 281-297.
[3] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2, 15195.
[4] Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett 579, 5923-5931.
[5] Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2, 15203.
[6] Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2, 15196.
[7] Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-144.
[8] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8, 1455-1465.
[9] Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799.
[10] Kim VN (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385.
[11] Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
[12] Liang G, He H, Li Y, Wang F, Yu D (2014). Molecular mech- anism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164, 249-258.
[13] Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K (2014). OsmiR396d-regulated OsGRFs func- tion in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165, 160-174.
[14] Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008). Microarray-based analysis of stress-regulated microRNAs in Ara- bidopsis thaliana. RNA 14, 836-843.
[15] Omidbakhshfard MA, Proost S, Fujikura U, Mueller- Roeber B (2015). Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8, 998-1010.
[16] Pasquinelli AE, Ruvkun G (2002). Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 18, 495-513.
[17] Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015). MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27, 3354-3366.
[18] Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5, R65.
[19] Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862.
[20] Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S (2015). Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stre- ss in tomato. J Exp Bot 66, 4653-4667.
文章导航

/

674-3466/bottom_cn.htm"-->