植物防御素调控水稻镉积累的新机制
收稿日期: 2018-03-08
录用日期: 2018-03-30
网络出版日期: 2018-09-11
A Defensin-like Protein Regulates Cadmium Accumulation in Rice
Received date: 2018-03-08
Accepted date: 2018-03-30
Online published: 2018-09-11
镉是我国农产品的主要重金属污染物之一。随着我国土壤重金属污染问题日益突出, 包括稻米在内的农产品重金属超标时常发生。如何防控重金属在作物可食部位的积累, 在保证农产品安全的同时将农田重金属进行移除修复, 已成为我国农业生产急需解决的问题。最近, 中科院上海生命科学院植物生理生态所龚继明研究组和中国水稻所钱前研究组克隆到1个特异调控镉在水稻(Oryza sativa)叶片中积累的主效QTL基因CAL1。CAL1编码1个植物防御素类似蛋白, 通过与镉进行螯合, 将镉从维管束木质部薄壁细胞中分泌出来, 进入木质部参与长距离转运, 从而定向调控镉在水稻叶片等营养器官的积累而不影响籽粒镉的积累。该研究加深了人们对重金属镉在植物体内的转运和再分配机理的认识, 同时也为培育秸秆镉高积累而籽粒镉含量达标的“修复型”水稻品种提供有价值的新基因。研究成果具有重要的理论意义和应用价值。
黄新元, 赵方杰 . 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018 , 53(4) : 451 -455 . DOI: 10.11983/CBB18056
Cadmium (Cd) is a highly toxic heavy metal that threatens human health. Rice is one of food crops that can accumulate Cd in the grain to levels that are unsafe for human consumption. With increasing contamination of heavy metals in paddy soils in China, considerable proportions of rice grain produced in some areas of southern China exceed the 0.2 mg·kg-1 Cd limit of the Chinese food standard, which causes widespread public concern. Molecular breeding of rice varieties that accumulate Cd in straw for removing Cd from paddy soil while producing safe grain is one of the strategies for phytoremediation of contaminated soils. Recently, Luo et al. identified a quantitative trait locus CAL1 in rice that specifically regulates the accumulation of Cd in leaves. CAL1 encodes a defensin-like protein that can chelate Cd in the cytosol and facilitates Cd secretion from xylem parenchyma cells into xylem vessels for long-distance transport. The chelation of Cd to CAL1 appears to prevent Cd from being loaded into the phloem for transport to rice grain. Thus, CAL1 does not affect the accumulation of Cd in rice grain. These findings shed light on understanding the molecular mechanism of Cd translocation and allocation in rice and provide a molecular tool to breed rice varieties that may be used to remove Cd from the soil without affecting grain Cd concentration.
Key words: rice; cadmium; phytoremediation; defensin protein
1 | 环境保护部和国土资源部 (2014). 全国土壤污染状况调查公报. . |
2 | Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017). Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in miti- gation of cadmium and arsenic stresses. Plant Mol Biol 94, 167-183. |
3 | Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013). Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.Environ Monit Assess 185, 9843-9856. |
4 | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012). Ion-beam irradiation, gene identification, and marker- assisted breeding in the development of low-cadmium rice.Proc Natl Acad Sci USA 109, 19166-19171. |
5 | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport.Sci Rep 2, 286. |
6 | Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018). A defensin-like protein drives cadmium efflux and allocation in rice.Nat Commun 9, 645. |
7 | Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Tak- ahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles.New Phytol 189, 190-199. |
8 | Sasaki A, Yamaji N, Yokosho K, Ma JF (2012). Nramp5 is a major transporter responsible for manganese and cad- mium uptake in rice.Plant Cell 24, 2155-2167. |
9 | Song Y, Wang Y, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017). Dietary cadmium expo- sure assessment among the Chinese population.PLoS One 12, e0177978. |
10 | Tang L, Mao BG, Li YK, Lv QM, Zhang LP, Chen CY, He HJ, Wang WP, Zeng XF, Shao Y, Pan YL, Hu YY, Peng Y, Fu XQ, Li HQ, Xia ST, Zhao BR (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield.Sci Rep 7, 14438. |
11 | Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010). Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA 107, 16500-16505. |
12 | Yan JL, Wang PT, Wang P, Yang M, Lian XM, Tang Z, Huang CF, Salt DE, Zhao FJ (2016). A loss-of-function allele of OsHMA3 associated with high cadmium accu- mulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39, 1941-1954. |
13 | Yang M, Zhang YY, Zhang LJ, Hu JT, Zhang X, Lu K, Dong HX, Wang DJ, Zhao FJ, Huang CF, Lian XM (2014). OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.J Exp Bot 65, 4849-4861. |
14 | Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015). Soil contamination in China: current status and mitigation stra- tegies.Environ Sci Technol 49, 750-759. |
15 | Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China.En- viron Pollut 219, 99-106. |
/
〈 | 〉 |