托里阿魏叶片蒸腾调节规律动力学测定方法探索
收稿日期: 2017-03-14
录用日期: 2017-06-20
网络出版日期: 2018-09-11
基金资助
国家自然科学基金(No.31371540, No.31260080)和山东省自然科学基金(No.ZR2012CM007)
A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves
Received date: 2017-03-14
Accepted date: 2017-06-20
Online published: 2018-09-11
以新疆荒漠自然条件下生长的托里阿魏(Ferula krylovii)为材料, 用高灵敏度湿度等传感器配合特制叶室, 记录和模拟分析了整个大型复叶的蒸腾耗水和蒸腾调节的动力学特性, 并与光合仪和称重法测定的结果进行对比。结果显示, 用传感器配合特制叶室, 监测到植物在短时间(1-2分钟)内的快速蒸腾动态调节及其日变化特征和参数, 根据这些参数可以分析同等条件下温度、光照和湿度等因子对蒸腾作用影响的相关性, 从而更精确地分析自然和高湿度条件下叶片的蒸腾耗水动力学特性, 提供其它方法无法观测的气孔对湿度变化的快速调节细节。同时, 由于该方法能够测定大尺度样品, 减少了其它方法由于仅能测定叶片局部而造成的因选点位置不同导致的取样误差、因气体样品量小造成的系统误差以及小叶室夹可能造成的机械压力胁迫。该方法与其它传感器结合, 能够更全面地获取植物在不同环境条件下的蒸腾耗水调节机制的相关参数, 理论上也可以远程遥控和连续监测, 为分析植物对环境的适应能力及其机制提供更为详细的动态图景。
张萍, 郝秀英, 于瑞凤, 周红梅, 朱建军 . 托里阿魏叶片蒸腾调节规律动力学测定方法探索[J]. 植物学报, 2018 , 53(3) : 353 -363 . DOI: 10.11983/CBB17051
The transpirational dynamics and regulation features in leaves of Ferula krylovii grown in a desert area of Xinjiang, China were monitored, recorded and analysed systematically with a high-sensitivity humidity sensor combined with a specific leaf chamber and other types of sensors. The results were compared with those from other methods such as photosynthetic meters or weighing. Parameters associated with or weighing. Parameters associated with fast regulation (within 1-2 min) and diurnal variations in transpiration rate were clearly monitored and recorded. The parameters obtained could be used to analyse the correlations between transpiration and the effect of changes in environmental factors such as temperature, light intensity, and humidity to uncover more details on the transpirational dynamics and regulation features of a plant, details that other methods are unable to provide. Because larger samples could be measured with this method, the disadvantages of other methods could be excluded, such as errors due to the selection of the local sampling site, systematic errors due to smaller gas samples, and possible mechanical stress due to the clamp of the leaf chamber. This method, combined with other types of sensors, could yield parameters that cover more extensively the transpirational water consumption and regulation of plants under varied environmental conditions and provide a more detailed dynamic perspective of plants in their adaptation to environments, with the possibility of remote, continuous monitoring.
[1] | 常杰, 葛滢 (1995). 松嫩平原西部林网生态场中玉米光合生态研究. 植物生态学报 19, 137-143. |
[2] | 郝秀英, 王卉, 张萍, 班娜, 朱建军 (2015). 温度对托里阿魏(Ferula krylovii)和骆驼蓬(Peganum harmala)的呼吸及光合作用的影响. 中国沙漠 35, 912-916. |
[3] | 何爽, 谭敦炎 (2002). 阿魏的研究进展. 新疆农业大学学报 25(2), 1-7. |
[4] | 惠红, 刘启新, 刘梦华 (2003). 中国伞形科前胡族阿魏亚族血清分类及亲缘关系的研究. 植物分类学报 41, 369-380. |
[5] | 李小波, 庄丽, 王仲科, 徐智全 (2012). 不同生长时期多伞阿魏土壤养分及光合特性比较研究. 植物研究 32, 151-158. |
[6] | 李新宇, 赖娜娜, 孙林, 郄怡彬, 蔺艳 (2008). 北京市5种园林树木蒸腾作用模拟研究. 植物学通报 25, 315-321. |
[7] | 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报 50, 100-106. |
[8] | Akhmetova A, Mukhitdinov N, Ydyrys A (2015). Anatomical indicators of the leaf structure of Ferula iliensis, growing in the eastern part of Zailiyskiy Alatau (big Boguty mountains). Pak J Bot 47, 511-515. |
[9] | Chaudhary DD, Nayse SP, Waghmare LM (2011). Application of wireless sensor networks for greenhouse parameter control in precision agriculture.Int J Wirel Mobile Netw 3, 1-6. |
[10] | Irmak S, Kabenge I, Rudnick D, Knezevic S, Woodward D, Moravek M (2013). Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for common reed, cottonwood and peach-leaf willow in the Platte River Basin, Nebraska-USA.J Hydrol 481, 177-190. |
[11] | Lendvay B, Kalapos T (2014). Population dynamics of the climate-sensitive endangered perennial Ferula sadleriana Ledeb.(Apiaceae). Plant Spec Biol 29, 138-151. |
[12] | Liu MZ, Jiang GM, Li YG, Niu SL, Gao LM, Ding L, Peng Y (2003). Leaf osmotic potentials of 104 plant species in relation to habitats and plant functional types in Hunshandak Sandland, Inner Mongolia, China.Trees 17, 554-560. |
[13] | Millan-Almaraz JR, De Jesus Romero-Troncoso R, Gue- vara-Gonzalez RG, Contreras-Medina LM, Carrillo- Serrano RV, Osornio-Rios RA, Duarte-Galvan C, Rios- Alcaraz MA, Torres-Pacheco I (2010). FPGA-based fused smart sensor for real-time plant-transpiration dyna- mic estimation.Sensors 10, 8316-8331. |
[14] | Montaldo N, Corona R, Albertson JD (2013). On the separate effects of soil and land cover on Mediterranean ecohydrology: two contrasting case studies in Sardinia, Italy.Water Resour Res 49, 1123-1136. |
[15] | Murphy DM, Koop T (2005). Review of the vapour pressures of ice and supercooled water for atmospheric applications.Quart J Roy Meteor Soc 131, 1539-1565. |
[16] | Sasaki S, Amano T (2010). Transpiration rate measurement using miniature temperature/humidity sensors.Anal Sci 26, 827-829. |
[17] | Savage MJ (2010). Field evaluation of polymer capacitive humidity sensors for Bowen ratio energy balance flux mea- surements.Sensors 10, 7748-7771. |
[18] | Tamang B, Andreu MG, Rockwood DL (2010). Microclimate patterns on the leeside of single-row tree windbreaks during different weather conditions in Florida farms: implications for improved crop production.Agrof Syst 79, 111-122. |
[19] | Yaqoob U, Nawchoo IA (2017a). Conservation and cultivation of Ferula jaeschkeana Vatke: a species with deep complex morphophysiological dormancy. Proc Natl Acad Sci India Sect B Biol Sci 87, 315-325. |
[20] | Yaqoob U, Nawchoo IA (2017b). Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke. J King Saud Univ Sci 29, 19-27. |
/
〈 | 〉 |