研究报告

优化子叶节转化法培育大豆MtDREB2A转基因植株

展开
  • 北京林业大学生物科学与技术学院, 林木育种国家工程实验室, 林木花卉遗传育种教育部重点实验室, 北京 100083

收稿日期: 2016-12-23

  录用日期: 2017-05-04

  网络出版日期: 2017-05-04

基金资助

转基因生物新品种培育重大专项(No.2009ZX08009-089B-4)

Breeding of MtDREB2A Transgenic Soybean by an Optimized Cotyledonary-Node Method

Expand
  • Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

Received date: 2016-12-23

  Accepted date: 2017-05-04

  Online published: 2017-05-04

摘要

将正交因素试验与GUS基因组织化学染色等技术相结合, 优化大豆(Glycine max)品种东农50遗传转化体系, 导入抗旱关键基因MtDREB2A。结果表明, 大豆种子表面消毒, NaClO溶液法与Cl2气熏蒸法的去污染率分别达到98.67%和93.33%。子叶节法转GUS基因组织化学染色率(68.33%)显著高于下胚轴法(14.00%)和胚尖法(0.67%) (P<0.05)。种子萌发5天, 农杆菌(Agrobacterium tumefaciens)培养温度25°C, OD600=0.9, 共培养5天的转GUS基因子叶节最高达72.00%; 恢复培养5天, 草丁膦(3 mg·L-1)、头孢噻肟钠(200 mg·L-1)和羧苄青霉素(300 mg·L-1)筛选诱导分化的转GUS基因不定芽最多为3.33%; 优化的大豆遗传转化体系转化效率为1.11%。转MtDREB2A基因大豆东农50植株根系更加密集, 主根长度和侧根数量均显著高于对照(P<0.05), 证实MtDREB2A基因具有促进大豆根系生长的作用, 为利用该基因进行大豆抗旱育种奠定了坚实的基础并提供了理论依据。

本文引用格式

吴国栋, 修宇, 王华芳 . 优化子叶节转化法培育大豆MtDREB2A转基因植株[J]. 植物学报, 2018 , 53(1) : 59 -71 . DOI: 10.11983/CBB16257

Abstract

Orthogonal factorial experiments and histochemical GUS staining were combined to optimize the genetic transformation system of Glycine max cv. ‘Dongnong 50’ and transfer the key gene MtDREB2A for drought resistance into the soybean. Sterile of soybean seeds used as explants with NaClO solution and Cl2 gas fumigation methods reached 98.67% and 93.33% germination, respectively. Histochemical staining rate of the tissues transformed with GUS by the cotyledon node method was 68.33%, significantly higher than that by the hypocotyl (14.00%) and embryo tip (0.67%) methods (P<0.05). The cotyledon node-transformed GUS gene was up to 72.00% in germinated sterile seeds for 5 days, mediated by Agrobacterium tumefaciens cultured at 25°C, OD600 0.9, and co-cultured for 5 days. The shoots were induced and differentiated with cotyledon node-transformed GUS up to 3.33% by optimal recovery culture for 5 days and were screened on culture medium containing phosphinothricin (3 mg·L-1), cefotaxime sodium (200 mg·L-1) and carbenicillin (300 mg·L-1). The transgenic efficiency was 1.11% with the optimized soybean genetic transformation system. The MtDREB2A transgenic plant roots of soybean ‘Dongnong 50’ were more dense and both taproot length and lateral root number were significantly longer and greater than those of the control (P<0.05). The study verified that the MtDREB2A gene plays a role in promoting soybean root growth, which lays a solid foundation and provides a theoretical basis for the gene using in drought resistance breeding of soybean.

参考文献

[1] 薄路花, 曹越平 (2015). 不同大豆品种对农杆菌EHA105和GV3101敏感性及共培养条件的优化. 上海交通大学学报(农业科学版) 33, 26-31.
[2] 董蕾, 任广明, 陈宝, 金羽, 曲娟娟 (2011). 转DREB基因大豆东农50对土壤氮素转化菌数量及生化强度的影响. 作物杂志 (5), 22-26.
[3] 杜升伟, 刘业丽, 姚丙晨, 白晨, 苗兴芬, 刘春燕, 陈庆山, 胡国华 (2010). 大豆转化体系的优化和Dof4基因转入大豆的研究. 大豆科学 29, 398-402.
[4] 杜艳丽, 谢甫绨 (2015). 转基因技术在大豆性状改良上的应用. 大豆科学 34, 320-328.
[5] 段莹莹, 赵琳, 陈李淼, 李文滨 (2010). 农杆菌介导的大豆子叶节和下胚轴转化方法的比较及优化. 大豆科学 29, 590-593.
[6] 韩献忠, 张治国, 刘骅, 赵立红 (1990). 条叶龙胆离体根培养条件的初步研究. 植物学通报 7(3), 49-51.
[7] 侯文胜, 林抗雪, 陈普, 贾志伟, 周扬, 于洋, 刘雁华 (2014). 大豆规模化转基因技术体系的构建及其应用. 中国农业科学 47, 4198-4210.
[8] 姜琼, 王幼宁, 王利祥, 孙政玺, 李霞 (2015). 盐胁迫下大豆根组织定量PCR分析中内参基因的选择. 植物学报 50, 754-764.
[9] 林荣双, 梁丽琨, 肖显华, 王顺珍 (2003). 花生幼叶为外植体的植株再生系统的建立. 植物学通报 20, 307-312.
[10] 林树柱, 曹越平, 卫志明, 马晓平, 陈鲁勇 (2005). 6-BA诱导大豆子叶节和茎尖出芽的研究. 上海交通大学学报(农业科学版) 23, 138-142.
[11] 刘瑞江, 张业旺, 闻崇炜, 汤建 (2010). 正交试验设计和分析方法研究. 实验技术与管理 27(9), 52-55.
[12] 刘银, 史秀岚, 王静磊, 刘琪迩, 王幼平 (2013). 大豆子叶节再生体系的建立. 扬州大学学报(农业与生命科学版) 34, 68-72.
[13] 刘营, 张明辉, 霍楠, 仇有文, 敖金霞, 高学军 (2012). 转基因大豆OsDREB3品系特异性定性PCR检测方法的建立. 中国农业大学学报 17(4), 34-39.
[14] 马晓红, 姚陆铭, 武天龙 (2008). 大豆整个子叶节外植体再生体系的建立及与子叶节、胚尖再生体系的比较. 大豆科学 27, 373-378.
[15] 马艳, 肖娅萍, 王彩玲, 王哲之 (2004). 苦皮藤试管苗生根培养研究. 植物学通报 21, 332-336.
[16] 邱波, 王志坤, 孟凡立, 李文滨 (2011). 不同大豆基因型再生性及对农杆菌敏感性的研究. 大豆科学 30, 752-756.
[17] 桑庆亮, 赖钟雄, 林玉玲, 陈裕坤 (2014). 荔枝基因枪转化及其GUS瞬时表达研究. 热带作物学报 35, 2223-2229.
[18] 王玲, 郭长奎, 任丁, 马红 (2017). 水稻非生物胁迫响应基因OsMIP1的表达与进化分析. 植物学报 52, 43-53.
[19] 王志坤, Sebastian A, 常健敏, 李丹丹, 邱波, 张大勇, 李文滨 (2014). 转GmDof11基因高油转基因大豆的鉴定及主要农艺性状调查. 作物杂志 (2), 39-42.
[20] 武小霞, 李静, 王志坤, 刘珊珊, 李海燕, 马永, 李文滨 (2010). 乙酰丁香酮浓度和共培养pH对大豆再生频率的影响. 东北农业大学学报 41(5), 1-4.
[21] 修宇 (2016). FpDREB2A基因调控刺槐直根生长抗旱机制及选育改良抗旱优质材料基础研究. 博士论文. 北京: 北京林业大学. pp. 80-81.
[22] 杨莹 (2013). 大豆中黄13农杆菌介导转化体系优化. 硕士论文. 北京: 北京林业大学. pp. 25-26.
[23] 姚丙晨, 闫双勇, 苏京平, 马忠友, 王晓静, 孙玥, 刘学军 (2015). 大豆转基因研究进展. 大豆科技 (5), 18-26.
[24] 袁鹰, 刘德璞, 郑培和, 温刚, 王玉民, 徐文静 (2004). 用基因枪将GUS基因导入玉米自交系的瞬时表达. 玉米科学 12, 41-43.
[25] 赵团结, 盖钧镒 (2004). 栽培大豆起源与演化研究进展. 中国农业科学 37, 954-962.
[26] Chen JR, Lü JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010). DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose(Rosa chinensis Jacq.). Plant Growth Regul 60, 199-211.
[27] Chen JR, Lü JJ, Wang TX, Chen SY, Wang HF (2009). Activation of a DRE-binding transcription factor from Medicago truncatula by deleting a Ser/Thr-rich region. In Vitro Cell Dev Biol Plant 45, 1-11.
[28] Donaldson PA, Simmonds DH (2000). Susceptibility to Agrobacterium tumefaciens and cotyledonary node trans- formation in short-season soybean. Plant Cell Rep 19, 478-484.
[29] Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33, 751-763.
[30] Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002). Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49, 459-471.
[31] Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.Plant J 68, 302-313.
[32] Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat Biotechnol 6, 915-922.
[33] Hong HP, Zhang HY, Olhoft P, Hill S, Wiley H, Toren E, Hillebrand H, Jones T, Cheng M (2007). Organogenic callus as the target for plant regeneration and transformation viaAgrobacterium in soybean(Glycine max 43, 558-568.
[34] Ko TS, Korban SS (2004). Enhancing the frequency of somatic embryogenesis followingAgrobacterium-media- ted transformation of immature cotyledons of soybean(Glycine max 40, 552-558.
[35] Liu HK, Yang C, Wei ZM (2004). Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219, 1042-1049.
[36] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.Plant Cell 10, 1391-1406.
[37] Olhoft P, Somers D (2001). L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledo- nary-node cells. Plant Cell Rep 20, 706-711.
[38] Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method.Planta 216, 723-735.
[39] Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50, 54-69.
[40] Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression.Plant Cell 18, 1292-1309.
[41] Seo JS, Sohn HB, Noh K, Jung C, An JH, Donovan CM, Somers DA, Kim DI, Jeong SC, Kim CG, Kim HM, Lee SH, Choi YD, Moon TW, Kim CH, Cheong JJ (2012). Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Mol Breed 29, 601-608.
[42] Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses.Curr Opin Plant Biol 6, 410-417.
[43] Tran LSP, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT (2009). Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281, 647-664.
[44] Wang GL, Xu YN (2008). Hypocotyl-based Agrobacterium-mediated transformation of soybean(Glycine max) and application for RNA interference. Plant Cell Rep 27, 1177-1184.
[45] Xiu Y, Iqbal A, Zhu C, Wu GD, Chang YP, Li N, Cao Y, Zhang WB, Zeng HM, Chen SY, Wang HF (2016). Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’. Plant Biotechnol J 14, 1456-1469.
文章导航

/