专题论坛

华北上新世−更新世过渡期植被、气候与大气CO2研究进展

  • 白云俊 ,
  • 魏雪苹 ,
  • 秦锋 ,
  • 李亚蒙 ,
  • 李金锋 ,
  • Parminder S. Ranhotra ,
  • 王宇飞
展开
  • 1中国科学院植物研究所系统与进化植物学国家重点实验室, 北京 100093
    2中国科学院古脊椎动物与古人类研究所中国科学院脊椎动物演化与人类起源重点实验室, 北京 100044
    3中国医学科学院北京协和医学院药用植物研究所, 北京 100193
    4中国科学院 地理科学与资源研究所陆地表层格局与模拟院重点实验室, 北京 100101
    5临沂大学地质与古生物研究所, 临沂 276005
    6萨尼古植物研究所, 勒克瑙 226007
    7中国科学院大学, 北京 100049

收稿日期: 2015-05-18

  录用日期: 2015-08-04

  网络出版日期: 2016-03-31

基金资助

国家重大科学研究计划(2014CB954201);国家自然科学基金(41271222);国家自然科学基金(30770148);国家自然科学基金(30990241);国家自然科学基金(41102017);中国博士后科学基金(2014M550822);中国科学院植物研究所系统与进化植物学国家重点实验室项目(LSEB2012-09)

Research Highlights of the Vegetation, Climate and Atmospheric CO2 in Yushe Basin, Shanxi, North China During the Plio-Pleistocene Transition

  • Yunjun Bai ,
  • Xueping Wei ,
  • Feng Qin ,
  • Yameng Li ,
  • Jinfeng Li ,
  • Parminder S. Ranhotra ,
  • Yufei Wang
Expand
  • 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
    3Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
    4Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Nature Resour- ces Research, Chinese Academy of Sciences, Beijing 100101, China
    5Institute of Geology and Paleontology, Linyi University, Linyi 276005, China
    6Birbal Sahni Institute of Palaeobotany, Lucknow 226007, India
    7University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-05-18

  Accepted date: 2015-08-04

  Online published: 2016-03-31

摘要

上新世−更新世过渡期是新生代全球气候变化的重要拐点之一, 此期气候经历了由“暖室”向“冰室”的转变。研究该气候转型期的特征可为科学界和国家层面应对现在和未来的全球气候变暖提供理论基础和实践指导。通过深入研究中国华北山西榆社盆地张村组上新世−更新世过渡期地层中保存的植物大化石、孢粉以及硅藻组合, 为重建该时段陆地生态系统中植被演替和气候变化提供坚实的生物学证据。在综合回顾张村组化石植物研究历史的基础上, 侧重介绍最近5年在古植被、古气候、古环境以及古大气CO2浓度重建等方面的最新进展。这些新成果定性及定量地刻画了第三纪−第四纪之交中国北方黄土高原东南缘气候变干、变凉的转型过程及其陆地生态系统中大气CO2浓度先升后降的变化趋势。

本文引用格式

白云俊 , 魏雪苹 , 秦锋 , 李亚蒙 , 李金锋 , Parminder S. Ranhotra , 王宇飞 . 华北上新世−更新世过渡期植被、气候与大气CO2研究进展[J]. 植物学报, 2016 , 51(2) : 257 -264 . DOI: 10.11983/CBB15086

Abstract

The Plio-Pleistocene transition is a key time interval with a remarkable climate switch from “greenhouse” to “icehouse” conditions across the Tertiary-Quaternary boundary. The plant megafossils, pollen-spores and diatom assemblages found in Plio-Pleistocene deposits of Zhangcun Lake, Yushe Basin, on the eastern edge of the Chinese Loess Plateau, provide a chance to reconstruct and interpret the vegetation, climate and environmental changes in North China. Here we briefly review the discoveries and research history of fossil plants and introduce the recent 5 years’ research highlights of the reconstruction of paleovegetation, paleoclimate, paleoatmospheric CO2 level and paleolake evolution. Those findings during the transition qualitatively and quantitatively (1) reflect a turning point towards cool and dry climate; (2) reveal a high peak of [CO2]atm with a new terrestrial-based proxy of stomatal index on leaves of Typha orientalis, thereby indicating transient interstadial phase; and (3) show a remarkable salinity shift from carbonate to sulfate in Yushe Basin based on the change in diatom assemblages, which indicates a significant aridification about 2.6 Ma on the east Loess Plateau of China.

参考文献

[1] 曹家欣, 崔海亭 (1989). 山西榆社盆地上新世植物群及其环境意义. 地质科学 24, 369-375.
[2] 方小敏, 吴福莉, 韩文霞, 王亚东, 张玺正, 张伟林 (2008). 上新世-第四纪亚洲内陆干旱化过程——柴达木中部鸭湖剖面孢粉和盐类化学指标证据. 第四纪研究 28, 874-882.
[3] 秦锋, 杨健, 李金锋, 刘海明, 王宇飞 (2010). 中国山西张村上新世气候与海拔的初步研究. 地学前缘 17, 345-360.
[4] 吴靖宇 (2009). 云南腾冲上新世团田植物群及其古环境分析. 博士论文. 兰州: 兰州大学. pp. 1-121.
[5] An ZS, Kutzbach JE, Prell WL, Porter SC (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62-66.
[6] Bai YJ, Chen LQ, Ranhotra PS, Wang Q, Wang YF, Li CS (2015). Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha. Glob Change Biol 21, 874-881.
[7] Bartoli G, H?nisch B, Zeebe RE (2011). Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26, PA4213.
[8] Beerling DJ, Birks HH, Woodward FI (1995). Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves. J Quaternary Sci 10, 379-384.
[9] Beerling DJ, Royer DL (2011). Convergent Cenozoic CO2 history. Nat Geoscience 4, 418-420.
[10] Bintanja R, van de Wal RSW (2008). North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869-872.
[11] Bonnefille R (2010). Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Glob Planet Change 72, 390-411.
[12] Coxall HK, Wilson PA, P?like H, Lear CH, Backman J (2005). Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53-57.
[13] Davis OK, Moutoux TE (1998). Tertiary and Quaternary vegetation history of the Great Salt Lake, Utah, USA. J Paleolimnol 19, 417-427.
[14] DeMenocal PB (1995). Plio-Pleistocene African climate. Science 270, 53-59.
[15] Ding ZL, Derbyshire E, Yang SL, Sun JM, Liu TS (2005). Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet Sc Lett 237, 45-55.
[16] Etourneau J, Khélifi N (2010). Workshop on Pliocene climate. Scientific Drilling 9, 52-53.
[17] Etourneau J, Schneider R, Blanz T, Martinezb P (2010). Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition. Earth Planet Sc Lett 297, 103-110.
[18] Guo ZT, Peng SZ, Hao QZ, Biscaye PE, An ZS, Liu TS (2004). Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global Planet Change 41, 135-145.
[19] Haug GH, Ganopolski A, Sigman DM, Rosell-Mele A, Swann GEA, Tiedemann R, Jaccard SL, Bollmann J, Maslin MA, Leng MJ (2005). North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821-825.
[20] Iwauchi A (1994). Late Cenozoic vegetational and climatic changes in Kyushu, Japan. Palaeogeogr Palaeocl Palaeoecol 108, 229-280.
[21] Kürschner WM, Kvacek Z, Dilcher DL (2008). The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105, 449-453.
[22] Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996). Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2concentrations. Mar Micropaleontol 27, 299-312.
[23] Li XQ, Li CS, Lu HY, Dodson JR, Wang YF (2004). Paleo- vegetation and paleoclimate in middle-late Pliocene, Shanxi, central China. Palaeogeogr Palaeocl Palaeoecol 210, 57-66.
[24] Li YM, Ferguson DK, Zhao Q, Wang YF, Wang RX, Li CS (2015). Diatom-inferred salinity changes from the Yushe paleolake indicate an aridification during the Pliocene- Pleistocene transition in north China. Palaeogeogr Palaeocl Palaeoecol 417, 544-553.
[25] Liu GW, Leopold EB, Liu Y, Wang WM, Yu ZY, Tong GB (2002). Palynological record of Pliocene climate events in North China. Rev Palaeobot Palyno 119, 335-340.
[26] Liu XQ, Li CS, Wang YF (2005). Bolboschoenus (Ascherson) Palla (Cyperaceae) from Pliocene of China. J Integr Plant Biol 47, 524-529.
[27] Locker S, Martini E (1989). Phytoliths at DSDP Site 591 in the southwest Pacific and the aridification of Australia. Geol Rundsch 78, 1165-1172.
[28] Lu H, Wang X, Li L (2010). Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. In: Clift PD, Tada R, Zheng H, eds. Monsoon Evolution and Tectonics-Climate Linkage in Asia. Vol. 342. London: Geological Society, Special Publications. pp. 29-44.
[29] Lunt DJ, Foster GL, Haywood AM, Stone EJ (2008). Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454, 1102-1105.
[30] Maslin MA, Haug GH, Sarnthein M, Tiedemann R (1996). The progressive intensification of northern hemisphere glaciation as seen from the North Pacific. Geol Rundsch 85, 452-465.
[31] Maslin MA, Li XS, Loutre MF, Berger A (1998). The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quaternary Sci Rev 17, 411-426.
[32] Momohara A (1994). Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeogr Palaeocl Palaeoecol 108, 281-293.
[33] Mudelsee M, Raymo ME (2005). Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 20, PA4002.
[34] Pearson PN, Foster GL, Wade BS (2009). Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 461, 1110-1113.
[35] Qiang XK, Li ZX, Powell CA, Zheng HB (2001). Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth Planet Sc Lett 187, 83-93.
[36] Qin F, Ferguson DK, Zetter R, Wang YF, Syabryaj S, Li JF, Yang J, Li CS (2011). Late Pliocene vegetation and climate of Zhangcun region, Shanxi, North China. Glob Change Biol 17, 1850-1870.
[37] Ravelo AC, Andreasen DH, Lyle M, Olivarez Lyle A, Wara MW (2004). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263-267.
[38] Reed KE (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. J Hum Evol 32, 289-322.
[39] Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014). Sea-level and deep- sea-temperature variability over the past 5.3 million years. Nature 508, 477-482.
[40] Royer DL (2001). Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palyno 114, 1-28.
[41] Ruddiman WF, Kutzbach JE (1989). Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. J Geophys Res (1984-2012) 94, 18409-18427.
[42] Rundgren M, Beerling DJ (1999). A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene 9, 509-513.
[43] Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD (2010). Alkenone and boron-based Pliocene pCO2 records. Earth Planet Sc Lett 292, 201-211.
[44] Shi N, Cao JX, K?nigsson LK (1993). Late Cenozoic vegetational history and the Pliocene-Pleistocene boundary in the Yushe basin, S. E. Shanxi, China. Grana 32, 260-271.
[45] Stults DZ, Wagner-Cremer F, Axsmith BJ (2011). Atmospheric paleo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of Eastern North America. Palaeogeogr Palaeocl Palaeoecol 309, 327-332.
[46] Tripati AK, Roberts CD, Eagle RA (2009). Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326, 1394-1397.
[47] van der Burgh J, Visscher H, Dilcher DL, Kürschner WM (1993). Paleoatmospheric signatures in Neogene fossil leaves. Science 260, 1788-1790.
[48] Wagner F, Kouwenberg LLR, van Hoof TB, Visscher H (2004). Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quaternary Sci Rev 23, 1947-1954.
[49] Woodward FI (1987). Stomatal numbers are sensitive to increases in CO2from pre-industrial levels. Nature 327, 617-618.
[50] Wu FL, Fang XM, Herrmann M, Mosbrugger V, Miao YF (2011). Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records. Glob Planet Change 76, 16-21.
[51] Xie SP, Sun BN, Wu JY, Lin ZC, Yan DF, Liang X (2012). Palaeoclimatic estimates for the late Pliocene based on leaf physiognomy from western Yunnan, China. Turk J Earth Sci 21, 251-261.
[52] Zachos JC (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693.
[53] Zachos JC, Dickens GR, Zeebe RE (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283.
[54] Zachos JC, Quinn TM, Salamy KA (1996). High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceano- graphy 11, 251-266.
[55] Zhang YG, Pagani M, Liu ZH, Bohaty SM, DeConto R (2013). A 40-million-year history of atmospheric CO2. Philos T Roy Soc A 371, 20130096.
[56] Zhao LC, Collinson ME, Li CS (2004). Fruits and seeds of Ruppia (Potamogetonaceae) from the Pliocene of Yushe Basin, Shanxi, northern China and their ecological implications. Bot J Linn Soc 145, 317-329.
文章导航

/