专题论坛

拟南芥无机氮素转运蛋白及其磷酸化调控研究进展

展开
  • 北京林业大学生物科学与技术学院, 北京 100083
? 共同第一作者

收稿日期: 2014-12-30

  录用日期: 2015-05-11

  网络出版日期: 2016-02-01

基金资助

基金项目: 中央高校基本科研业务费专项资金(No;BLX2012038)和国家自然科学基金(No.31400221)

Progress in Inorganic Nitrogen Transport Proteins and Their Phosphorylation Regulatory Mechanism in Arabidopsis

Expand
  • College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
? These authors contributed equally to this paper

Received date: 2014-12-30

  Accepted date: 2015-05-11

  Online published: 2016-02-01

摘要

氮元素是植物必需的营养元素之一, 氮素供需失衡会严重影响植物的生长发育。无机氮(硝酸根NO3-和铵根NH4+)是植物体内氮素的主要来源, 对其有效吸收和利用依赖于多种类型转运蛋白的协同作用。其中, 部分无机氮素转运蛋白的活性受到可逆磷酸化作用的精准调控。该文将对模式植物拟南芥(Arabidopsis thaliana)中硝酸根和铵根转运蛋白的分类、结构、定位和功能特点等进行总结, 并重点对可逆磷酸化调控转运蛋白的分子机制加以阐述。

本文引用格式

张曦, 林金星, 单晓昳 . 拟南芥无机氮素转运蛋白及其磷酸化调控研究进展[J]. 植物学报, 2016 , 51(1) : 120 -129 . DOI: 10.11983/CBB14222

Abstract

Nitrogen (N) is an essential nutrient element. Its supply and demand imbalance would seriously affect plant growth and development. Inorganic N (nitrate and ammonium radical) is the major N source in plant, with assimilation and transportation depending on synergistic action of various transport proteins. The activity of some inorganic N transporters is regulated at the post-translation level by phosphorylation. This review describes a global picture of the inorganic N transporters including their classification, molecular structure, location and biological function in Arabidopsis. The phosphorylation regulatory mechanisms of some inorganic N transporters are mainly discussed.

参考文献

1 Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S (2011). Anion channels/transporters in plants: from molecular bases to regulatory networks.Annu Rev Plant Biol 62, 25-51.
2 Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjärvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action.Proc Natl Acad Sci USA 109, 10593-10598.
3 Chadwick DR, John F, Pain BF, Chambers BJ, Williams J (2000). Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: a laboratory experiment.J Agric Sci 134, 159-168.
4 Crawford NM (1995). Nitrate: nutrient and signal for plant growth.Plant Cell 7, 859-868.
5 Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants.Oecologia 78, 9-19.
6 Filleur S, Dorbe M, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001). An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake.FEBS Lett 489, 220-224.
7 Forde BG (2000). Nitrate transporters in plants: structure, function and regulation.Bba-Biomembranes 1465, 219-235.
8 Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999). Three functional transporters for constitutive, diurnally regulated, and starvation indu- ced uptake of ammonium into Arabidopsis roots.Plant Cell 11, 937-947.
9 Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1.Sci Signal 4, a32.
10 Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K, Grill E (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities.Proc Natl Acad Sci USA 107, 8023-8028.
11 Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kron- zucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE (2002). The regulation of nitrate and ammonium transport systems in plants.J Exp Bot 53, 855-864.
12 Glass AD, Shaff JE, Kochian LV (1992). Studies of the uptake of nitrate in barley IV. Electrophysiology.Plant Physiol 99, 456-463.
13 Ho CH, Lin SH, Hu HC, Tsay YF (2009). CHL1 functions as a nitrate sensor in plants.Cell 138, 1184-1194.
14 Hsu PK, Tsay YF (2013). Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.Plant Phy- siol 163, 844-856.
15 Huang NC, Liu KH, Lo HJ, Tsay YF (1999). Cloning and functional characterization of an Arabidopsis nitrate trans- porter gene that encodes a constitutive component of low- affinity uptake.Plant Cell 11, 1381-1392.
16 Javelle A, Morel M, Rodríguez Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum.Mol Microbiol 47, 411-430.
17 Jentsch TJ (2008). CLC chloride channels and transporters, from genes to protein structure, pathology and physiology.Crit Rev Biochem Mol 43, 3-36.
18 Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002). Molecular structure and physiological function of chloride channels.Physiol Rev 82, 503-568.
19 Kiba T, Feria-Bourrellier A, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.Plant Cell 24, 245-258.
20 Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014). Nitrate transport and signaling in Arabidopsis.J Exp Bot 65, 789-798.
21 Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalonde S, Schulze WX, von Wirén N, Frommer WB (2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.Plant Cell 21, 3610-3622.
22 Lawlor DW, Lemaire G, Gastal F (2001) Nitrogen, Plant Growth and Crop Yield. Berlin: Springer. pp. 343-367.
23 Lea PJ, Azevedo RA (2006). Nitrogen use efficiency. 1. Up- take of nitrogen from the soil.Ann Appl Biol 149, 243-247.
24 Lee SC, Lan W, Buchanan BB, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells.Proc Natl Acad Sci USA 106, 21419-21424.
25 Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B (2013). Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation.Mol Plant 6, 1984-1987.
26 Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J (2010). The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance.Plant Cell 22, 1633-1646.
27 Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007). Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.Plant Physiol 143, 425-433.
28 Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB (2008). Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.Plant Cell 20, 2514-2528.
29 Liu KH, Huang CY, Tsay YF (1999). CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.Plant Cell 11, 865-874.
30 Liu KH, Tsay YF (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation.EMBO J 22, 1005-1013.
31 Loqué D, Lalonde S, Looger LL, Von Wirén N, Frommer WB (2007). A cytosolic trans-activation domain essential for ammonium uptake.Nature 446, 195-198.
32 Loqué D, von Wirén N (2004). Regulatory levels for the transport of ammonium in plant roots.J Exp Bot 55, 1293-1305.
33 Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, Von Wirén N (2006). Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots.Plant J 48, 522-534.
34 Mayer M, Ludewig U (2006). Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana.Plant Biol 8, 522-528.
35 Mei HS, Thimann KV (1984). The relation between nitrogen deficiency and leaf senescence.Physiol Plant 62, 157-161.
36 Miflin BJ, Lea PJ (1976). The pathway of nitrogen assimilation in plants.Phytochemistry 15, 873-885.
37 Nacry P, Bouguyon E, Gojon A (2013). Nitrogen Acquisition by Roots: Physiological and Developmental Mechanisms Ensuring Plant Adaptation to a Fluctuating Resource. Berlin: Springer. pp. 1-29.
38 Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998). Boreal forest plants take up organic nitrogen.Nature 392, 914-916.
39 Neuhäuser B, Dynowski M, Mayer M, Ludewig U (2007). Regulation of NH4+ transport by essential cross talk bet- ween AMT monomers through the carboxyl tails.Plant Physiol 143, 1651-1659.
40 Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006). High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.Plant Physiol 140, 1036-1046.
41 Parker JL, Newstead S (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1.Nature 507, 68-72.
42 Robertson GP, Vitousek PM (2009). Nitrogen in agriculture: balancing the cost of an essential resource.Annu Rev Environ Resour 34, 97-125.
43 Robertson JL, Kolmakova-Partensky L, Miller C (2010). Design, function and structure of a monomeric ClC trans- porter.Nature 468, 844-847.
44 Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007). Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter.Plant Cell 19, 3760-3777.
45 Sekhon GS (1995). Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries.J Contam Hydrol 20, 167-184.
46 Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.Nature 507, 73-77
47 Tsay YF (2014). Plant science: how to switch affinity.Nature 507, 44-45.
48 Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007). Nitrate transporters and peptide transporters.FEBS Lett 581, 2290-2300.
49 Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter.Cell 72, 705-713.
50 Vert G, Chory J (2009). A toggle switch in plant nitrate uptake.Cell 138, 1064-1066.
51 von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010). CLCb-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles.Plant Cell Physiol 51, 960-968.
52 von Wirén N, Merrick M (2004). Regulation and Function of Ammonium Carriers in Bacteria, Fungi, and Plants. Berlin: Springer. pp. 95-120.
53 von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants.BMC Evol Biol 14, 11.
54 Wang YY, Hsu PK, Tsay YF (2012). Uptake, allocation and signaling of nitrate.Trends Plant Sci 17, 458-467.
55 Wang YY, Tsay YF (2011). Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport.Plant Cell 23, 1945-1957.
56 Yuan L, Graff L, Loqué D, Kojima S, Tsuchiya YN, Takahashi H, von Wirén N (2009). AtAMT1;4, a pollen- specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis.Plant Cell Physiol 50, 13-25.
57 Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.Plant Cell 19, 2636-2652.
文章导航

/

674-3466/bottom_cn.htm"-->