技术方法

绣球花筑紫之风离体再生技术体系的建立

  • 金玉妍 ,
  • 陈双双 ,
  • 冯景 ,
  • 刘欣童 ,
  • 齐香玉 ,
  • 陈慧杰 ,
  • 董燕 ,
  • 邓衍明
展开
  • 1江苏省农业科学院休闲农业研究所, 南京 210014; 2中国花卉协会, 北京 100102

收稿日期: 2025-04-17

  修回日期: 2025-07-17

  网络出版日期: 2025-07-30

基金资助

中央财政林业科技推广示范项目(No.苏[2024]TG03),江苏省农业科技自主创新资金项目(No.CX(22)2035)

Establishment of Regeneration System in vitro for Hydrangea macrophylla cv. ‘Chikushi-no-kaze’

  • JIN Yu-Yan ,
  • CHEN Shuang-Shuang ,
  • FENG Jing ,
  • LIU Xin-Tong ,
  • ZI Xiang-Yu ,
  • CHEN Hui-Jie ,
  • DONG Yan ,
  • DENG Yan-Meng
Expand
  • 1Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2China Flower Association, Beijing 100102, China

Received date: 2025-04-17

  Revised date: 2025-07-17

  Online published: 2025-07-30

摘要

以绣球花筑紫之风(Hydrangea macrophylla ‘Chikushi-no-kaze’)无菌苗叶片为外植体进行高效再生技术研究,探究不同叶位、暗培养时间及植物生长调节剂等条件对愈伤组织诱导、不定芽再生和增殖、壮苗生长及生根的影响。结果表明,筑紫之风组培苗的第3-5位叶(即中部成熟叶片)为最佳取样叶位,暗培养10-14天有利于诱导愈伤组织和再生不定芽,最适培养基为MS+3.0 mg·L-1 CPPU+0.1 mg·L-1 2,4-D,诱导率和再生率分别为97.78%和93.33%;不定芽增殖最适培养基为MS+2.0 mg·L-1 6-BA+0.1 mg·L-1 IBA,增殖系数可达8.33;壮苗生长最适培养基为MS+1.0 mg·L-1 6-BA+0.1 mg·L-1 IBA,幼苗平均茎高为4.10 cm;以MS+0.3 mg·L-1 IBA进行生根培养,生根率可达87.20%。本研究建立了绣球花筑紫之风高效离体再生技术体系,为种苗快繁、品种改良和基因功能研究提供了技术支撑。

本文引用格式

金玉妍 , 陈双双 , 冯景 , 刘欣童 , 齐香玉 , 陈慧杰 , 董燕 , 邓衍明 . 绣球花筑紫之风离体再生技术体系的建立[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB25068

Abstract

INTRODUCTION: Hydrangea is essential in landscaping, ecology, and medical care, with significant development prospects. ‘Chikushi-no-kaze’ is an ideal low-maintenance variety for micro-landscaping and potted Hydrangea, widely favored by consumers. However, the extremely low setting rate of Hydrangea and poor seed development under natural conditions render traditional reproduction methods inadequate for meeting the demands of large-scale annual production in the market. The breeding of Hydrangea plantlets through tissue culture technology is currently the most efficient method for producing high-quality plantlets. 

RATIONALE: Regeneration efficiency in plant tissue culture is a key factor in achieving factory seedling production. Therefore, this study investigated the regeneration efficiency of isolated leaves from tissue culture plantlets of ‘Chikushi-no-kaze’ under optimal culture conditions at each key stage, considering different leaf positions, dark culture durations, and other factors. The aim was to establish an efficient regeneration technology system, which provides technical guidance for large-scale plantlet production and serves as a reference for establishing a genetic transformation system for Hydrangea in the future. 

RESULTS: The 3rd to 5th leaves (middle mature leaves) of ‘Chikushi-no-kaze’ tissue culture plantlets were identified as the optimal sampling leaves. A dark culture duration of 10-14 days was conducive to callus formation. The most suitable medium for the induction and regeneration of adventitious buds was MS + 3.0 mg·L-1 CPPU + 0.1 mg·L-12,4-D, with induction and regeneration rates of 97.78% and 93.33%, respectively. The optimal medium for adventitious bud proliferation was MS + 2.0 mg·L-1 6-BA + 0.1 mg·L-1 IBA, yielding a proliferation coefficient of 8.33. For elongation growth, the optimal medium was MS + 1.0 mg·L-1 6-BA + 0.1 mg·L-1 IBA, resulting in an average stem length of 4.10 cm. The optimal medium for rooting culture was MS + 0.3 mg·L-1 IBA, achieving a rooting rate of 87.20%. 

CONCLUSION: This study initially established a technical system for in vitro leaf regeneration of big leaf Hydrangea 'Chikushi-no-kaze', which effectively solved the problem of low efficiency of adventitious bud regeneration of Hydrangea, helped to achieve efficient reproduction and recycling. Lay the foundation for large-scale production and genetic improvement of Hydrangea.

参考文献

陈彩霞, 黄敏, 赵怡, 曹传取, 王吉升, 史志话, 汪葛峰, 高俊山 (2023). 大花海棠‘比哥’离体快繁再生体系的初步建立. 中国农学通报 39(34), 86-91. 陈爽, 李叶华, 赵冰 (2020). 两种野生绣球花组培及快繁技术研究. 种子 39(4), 60-64. 崔文宁 (2016). 外植体的选择对果树叶片离体培养的影响研究. 现代农村科技 (21), 53-54. 邓衍明, 陈慧杰, 陈双双, 冯景, 齐香玉, 金玉妍, 苗艳华 (2023). 绣球花文化内涵及其在休闲农业中的应用研究. 现代农村科技 (11), 75-77. 宦智群, 徐小蓉, 耿兴敏, 唐明 (2022). 木兰科植物组织培养技术研究进展. 广西植物 42(11), 1980-1993 韩勇, 张艳双, 郭磊, 顾文洪, 吴志鹏, 章鸥, 张宗俊, 胡波 (2021). 绣球属植物扦插生根能力的综合评价. 上海蔬菜 (1), 79-82. 康敏, 张美莹, 齐秀双, 佟宁宁, 李旸, 舒庆艳, 刘政安, 吕长平, 彭丽平 (2024). 伊藤杂种‘和谐’组培快繁体系的建立. 植物学报 59, 441-451. 马生健, 刘金祥, 曾富华, 鲁泽东 (2020). 高羊茅高效组织培养再生体系的建立. 分子植物育种 1818(5), 1611-1616 聂绍虎, 刘江淼, 张鑫静, 王月莹, 高永慧, 赵惠恩 (2020). 栎叶绣球‘雪花’再生体系的建立. 分子植物育种 18(5), 1593-1599. 秦紫艺, 陈双双, 王华娣, 邓衍明 (2021). 绣球属植物组织培养研究进展. 江苏农业科学49(19), 45-50. 苏鹏飞 (2024). 栎叶绣球再生及光响应机制和遗传转化体系研究 博士论文. 合肥:中国科学技术大学.pp.20-34. 孙晓波, 苏家乐, 陈双双, 梁丽建, 邓衍明 (2020). 大花绣球‘无尽夏’组培苗叶片再生植株的研究. 中国农学通报36(16), 67-72. 王春丹, 张秀珊, 王健蓉, 林天友, 苏镇祥, 陈桂玲, 曾宝珰 (2023). 暗培养时间对汕农幸运女神和汕农福星蝴蝶兰丛生芽增殖率的影响初探. 农业与技术 43(17), 30-33. 王红梅, 陈婷婷, 刘春风, 孟紫莲, 高鹏 (2022). 圆锥绣球‘粉色精灵’组培快繁技术研究. 种子 41(4), 130-138. 王晓春, 师尚, 梁慧敏,夏阳 (2010). 2,4-D和6-BA组合配比对金达苜蓿愈伤组织诱导与分化的影响 草地学报 18(2), 219-222 王亚琴, 韦陆丹, 王文静, 刘宝骏, 张春玲, 张俊卫, 何燕红 (2020). 万寿菊再生体系的建立及优化. 植物学报 55, 749-759. 吴凡, 江俊浩, 卢山, 张楠, 邱帅, 魏建芬, 沈柏春 (2022). 中国绣球属种质资源及其利用研究进展. 园艺学报 49(9), 2037-2050. 武晓云, 廖敏凌, 李雪茹, 舒梓淳, 辛佳潼, 张伯晗, 戴思兰 (2024). 毛华菊3种瓣型株系再生体系的建立. 植物学报 59, 245-256. 汪耀, 许早时, 侯金艳, 杨海波, 张明发 (2024). 大花绣球‘史欧尼’的组培快繁技术研究. 安徽林业科技 50(3), 31-35. 谢纯刚, 刘哲, 章书声, 胡海涛 (2023). 手指柠檬茎段离体再生体系建立. 植物学报 58, 926-934. 张郎郎, 张 洁, 吕虹霖, 谭彬, 王伟, 程钧, 冯建灿 (2022). 欧洲李叶片再生体系的建立.果树学报 39(10), 1945-1953. 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷 (2018). 欧洲百合愈伤组织诱导及植株再生体系的建立. 植物学报 53, 840-847. 周亚辉 (2020). 八仙花组织培养研究现状、问题及展望. 农业科学研究 41(1), 68-70. Azza MS Arafa, AA Nower, Samia S Helme, H A Abd-Elaty (2017). Large scales of Hydrangea macrophylla using tissue culture technique. Int.J.Curr.Microbiol.App.Sci 6(5), 776-778. Bernula D, Benk? P, Kaszler N, Domonkos I, Valkai I, Sz?ll?si R, Ferenc G, Ayaydin F, Fehér A, Gémes K (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140(2), 327-339. Chen HJ, Liu XT, Mao JD, Qi XY, Chen SS, Feng J, Jin YY, Muhammad ZA, Sun M, Deng YM (2022). Comparative transcriptomic and physiological analyses reveal the key role of abscisic acid in hydrangea macrophylla responding to Corynespora cassiicola. BMC Plant Biol, 24(1), 106 Chen SS, Qi XY, Feng J, Chen HJ, Qin ZY, Wang HD, Deng YM (2022). Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals. Plant Physiol Bioch 185, 268-278. Doil A, Zhang R, Schum A, Serek M, Winkelmannet T (2008). In vitro regeneration and propagation of Hydrangea macrophylla Thumb ‘Nachtigall’. Propag Ornam Plants, 8(3), 151-153. Donna I.L. and John E.P. (2004). Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia Bartr. leaf explants, Sci. Hortic., 101(1-2), 121-126. Feng J, Chen SS, Chen HJ, Dai LJ, Muhammad ZA, Gao K, Qiu S, Jin YY, Deng YM (2024). Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H. arborescens. Plant Cell Rep, 43(10), 248. Liu F, Huang LL, Li YL, Reinhoud P, Jongsma MA, Wang CY (2011). Shoot organogenesis in leaf explants of Hydrangea macrophylla ‘Hyd1’ and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tiss Org 104(1), 111-117. Long Y, Yang Y, Pan GT, Shen YO (2022). New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13, 926752. Raspor M, Motyka V, Kaleri AR, Ninkovi? S, Tubi? L, Cingel A, ?osi? T (2021). Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: from hormone uptake to signaling outputs. Int J Mol Sci 22(16), 8554. Sacco E, Savona M, Antonetti M, Grassotti A, Pasqualetto PL, Ruffoni B (2012). In vitro propagation and regeneration of several Hydrangea genotypes. Acta Hortic. 937, 565-572. Wang SR, Yan J, Ha BE, Bai YE (2021). An efficient plant regeneration system of Hydrangea bretschneideri Dipp via stem segments as explants. Phyton (B.Aires), 90(2), 595-604.
文章导航

/