研究论文

棉花抗黄萎病相关基因GhDIR1的初步功能分析

  • 苏晓峰 ,
  • 陈析丰 ,
  • 黄雨欣 ,
  • 王省芬 ,
  • 郭惠明 ,
  • 马伯军 ,
  • 程红梅 ,
  • 谢涛
展开
  • 1浙江师范大学生命科学学院, 金华 321004; 2中国农业科学院生物技术研究所农业微生物资源发掘与利用全国重点实验室,北京 100081; 3河北农业大学农学院, 保定 071000


收稿日期: 2024-09-04

  修回日期: 2024-10-12

  网络出版日期: 2024-11-15

基金资助

农业生物育种重大项目(No.2023ZD04039-03-3)和浙江省自然科学基金(No.LZ23C130004)

Preliminary Analysis of Function of the Gene GhDIR1 Related With Verticillium Wilt in Cotton

  • SU Xiao-Feng ,
  • CHEN Si-Feng ,
  • HUANG Yu-Xin ,
  • YU Sheng-Fen ,
  • GUO Hui-Meng ,
  • MA Ba-Jun ,
  • CHENG Hong-Mei ,
  • XIE Shou
Expand
  • 1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; 2National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3College of Agriculture, Hebei Agricultural University, Baoding 071000, China

Received date: 2024-09-04

  Revised date: 2024-10-12

  Online published: 2024-11-15

摘要

由大丽轮枝菌引起的黄萎病是棉花生产中最主要的威胁之一, 其可导致棉花大幅减产和纤维品质严重下降。课题组前期对接种大丽轮枝菌的拟南芥进行转录组分析, 其中DIR1类蛋白基因AT3G53980.2受病原菌强烈诱导表达。本研究发现, 棉花脂质转移蛋白基因GhDIR1 (Gh_A09G180700.1)与其表现出高度的同源性。生物信息学分析表明GhDIR1开放阅读框(open reading frame, ORF)为351 bp, 编码116个氨基酸。亚细胞定位结果证明, GhDIR1定位于细胞膜上。分析GhDIR1在大丽轮枝菌V991侵染后的表达模式, 发现其能快速响应大丽轮枝菌侵染。利用病毒诱导的基因沉默(virus-induced gene silencing, VIGS)技术下调该基因表达后, 棉花对黄萎病菌抗性显著降低。分析野生型和GhDIR1沉默植株转录组测序结果, 发现差异表达基因主要在“类黄酮生物合成”“倍半萜和三萜生物合成”和“α-亚麻酸代谢”三个途径富集, 同时荧光定量结果表明三个途径中的六个关键基因GhCHSGhDFRGhCADGhSEQGhLOXGhAOCGhDIR1沉默植株中均下调表达, 与转录组数据一致; 推测GhDIR1可能通过介导类黄酮和萜类化合物合成途径, 并调节茉莉酸(jasmonic acid, JA)等植物激素的次级代谢, 来激活相关信号通路以影响植株抗病性。综上, GhDIR1作为棉花抗黄萎病的正向调控因子, 通过参与多种激素和抗病信号网络调控植物免疫防御反应。

本文引用格式

苏晓峰 , 陈析丰 , 黄雨欣 , 王省芬 , 郭惠明 , 马伯军 , 程红梅 , 谢涛 . 棉花抗黄萎病相关基因GhDIR1的初步功能分析[J]. 植物学报, 0 : 1 -0 . DOI: 10.11983/CBB24135

Abstract

Verticillium wilt, caused by Verticillium dahliae, is one of the most major threats in cotton production, which can lead to a significant reduction of cotton yield and fiber quality. Our research team previously conducted a transcriptomic analysis on Arabidopsis thaliana inoculated with V. dahliae and discovered that the gene AT3G53980.2, which encodes the DIR1-like protein, was strongly induced by the pathogen. In this study, we discovered that the cotton lipid transfer protein gene GhDIR1 (Gh_A09G180700.1) displays high homology with AT3G53980.2. Bioinformatic analysis indicated that the open reading frame (ORF) of GhDIR1 is 351 bp, encoding 116 amino acids. The subcellular localization analysis using transient expression displayed that GhDIR1 was shown to be localized to the cell membrane. Quantitative real-time PCR (qRT-PCR) analysis determined that GhDIR1 expression was rapidly induced by V. dahliae. Virus-induced gene silencing revealed that downregulation of GhDIR1 significantly increased cotton susceptibility to V. dahliae. Further analysis through transcriptomic sequencing of wild-type and GhDIR1-silenced plants revealed that differentially expressed genes were primarily enriched in pathways related to "flavonoid biosynthesis","sesquiterpene and triterpene biosynthesis" and "α-linolenic acid metabolism". The expression levels of marker genes (GhCHS, GhDFR, GhCAD, GhSEQ, GhLOX, and GhAOC) involved in three pathways were downregulated. This data suggests that GhDIR1 contributes to the synthesis of protective compounds. We propose that GhDIR1 may mediate the synthesis of flavonoids and terpenoids, regulate the secondary metabolism of plant hormones such as jasmonic acid (JA), and activate related signaling pathways. These results suggested that GhDIR1 might act as a positive regulatory factor and modulate immune defense responses through its regulation in multiple hormone and resistance signaling networks against Verticillium wilt in cotton.

参考文献

[1]Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K(2004).Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.Plant Cell, 16:3460-3479.
[2]Chen B, Zhang Y, Yang J, Zhang M, Ma Q, Wang X, Ma Z(2021).The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation.The Crop Journal, 9:823-833.
[3]Chen L, Ji C, Zhou D, Gou X, Tang J, Jiang Y, Han J, Liu YG, Chen L, Xie Y(2022).OsLTP47 may function in a lipid transfer relay essential for pollen wall development in rice.J Genet Genomics, 49:481-491.
[4]David L, Kang J, Nicklay J, Dufresne C, Chen S(2021).Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance.Front Mol Biosci, 8:746523-746523.
[5]Fradin EF, Thomma BP(2006).Physiology and molecular aspects of Verticillium wilt diseases caused by V.dahliae and V. albo-atrum .Mol Plant Pathol, 7:71-86.
[6]Gautam H, Sharma A, Trivedi PK(2023).The role of flavonols in insect resistance and stress response.Current Opinion in Plant Biology, 73:102353-102353.
[7]Gfeller A, Dubugnon L, Liechti R, Farmer EE(2010).Jasmonate biochemical pathway.Sci Signal, 3:cm3-cm3.., :-.
[8]Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L, Pena-Cortes H(1995).Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes.Plant Cell, 7:1645-1654.
[9]Huang H, Liu B, Liu L, Song S(2017).Jasmonate action in plant growth and development.Journal of Experimental Botany, 68:1349-1359.
[10]Huang Y, Xie FJ, Cao X, Li MY(2021).Research progress in biosynthesis and regulation of plant terpenoids.Biotechnol Biotechnol Equip, 3:1799-1808.
[11]Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA(2011).Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize.Plant Physiol, 156:2082-2097.
[12]Jacq A, Pernot C, Martinez Y, Domergue F, Payr B, Jamet E, Burlat V, Pacquit VB(2017).The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) Is Involved in Cuticle-Cell Wall Interface Integrity and in Etiolated Hypocotyl Permeability.Front Plant Sci, 8:263-268.
[13]Kim J, Lee WJ, Vu TT, Jeong CY, Hong SW, Lee H(2017).High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.Plant Cell Rep, 36:1215-1224.
[14]Kumar V, Nadda G, Kumar S, Yadav SK(2013).Transgenic Tobacco Overexpressing Tea cDNA Encoding Dihydroflavonol 4-Reductase and Anthocyanidin Reductase Induces Early Flowering and Provides Biotic Stress Tolerance.PLoS One, 8:e65535-e65538.., :-.
[15]Liao Z, Wang L, Li C, Cao M, Wang J, Yao Z, Zhou S, Zhou G, Zhang D, Lou Y(2022).The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice.Plant Cell Environ, 45:2827-2840.
[16]Lill R(2009).Function and biogenesis of iron-sulphur proteins.Nature, 460:831-838.
[17]Liu D, Shi S, Hao Z, Xiong W, Luo M(2019).OsbZIP81,A Homologue of Arabidopsis VIP1,May Positively Regulate JA Levels by Directly Targetting the Genes in JA Signaling and Metabolism Pathway in Rice.Int J Mol Sci, 20:4360-4387.
[18]Liu PP, von Dahl CC, Park SW, Klessig DF(2011).Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco.Plant Physiol, 155:1762-1768.
[19]Lu Y(2018).Assembly and Transfer of Iron-Sulfur Clusters in the Plastid.Front Plant Sci, 14:336-353.
[20]Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK(2002).A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis.Nature, 419:399-403.
[21]Mansfeld BN, Colle M, Kang Y, Jones AD, Grumet R(2017).Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici.Hortic Res, 4:17022-17033.
[22]Mo H, Wang X, Zhang Y, Zhang G, Zhang J, Ma Z(2015).Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae.Plant J, 83:962-975.
[23]Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, ang Z(2019).Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering.J Exp Bot, 70:4721-4736.
[24]Sanchez S and Demain AL(2008).Metabolic regulation and overproduction of primary metabolites.Microb Biotechnol, 1:283-319.
[25]Seo S-b, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D(2001).Regulation of Histone Acetylation and Transcription by INHAT,a Human Cellular Complex Containing the Set Oncoprotein.Cell, 104:119-130.
[26]Song R, Li J, Xie C, Jian W and Yang X(2020).An Overview of the Molecular Genetics of Plant Resistance to the Verticillium Wilt Pathogen Verticillium dahliae.Int J Mol Sci, 21:1120-1136.
[27]Su X, Lu G, Guo H, Zhang K, Li X, Cheng H(2018).The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana.Sci Rep, 18:15404-15415.
[28]Thayale Purayil F, Rajashekar B, S SK, Cheruth AJ, Subramaniam S, Hassan Tawfik N, K MAA(2020).Transcriptome Profiling of Haloxylon persicum (Bunge ex Boiss and Buhse) an Endangered Plant Species under PEG-Induced Drought Stress.Genes, 10:640-659.
[29]Tholl D.(2015).Biosynthesis and biological functions of terpenoids in plants.Adv Biochem Eng Biotechnol, 148:63-106.
[30]Waadt R, Seller CA, Hsu P-K, Takahashi Y, Munemasa S, Schroeder JI(2022).Plant hormone regulation of abiotic stress responses.Nature Reviews Molecular Cell Biology, 23:680-694.
[31]Wang L, Xu G, Li L, Ruan M, Bennion A, Wang GL, Li R, Qu S(2023).The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway.Proc Natl Acad Sci U S A ., 120:e2211102120-1-e2211102120-12.., :-.
[32]Wang Q, Cao R, Zhang Y, Qi P, Wang L, Fang S(2021).Biosynthesis and regulation of terpenoids from basidiomycetes: exploration of new research.AMB Express, 11:150-167.
[33]Xu YH, Wang JW, Wang S, Wang JY, hen XY(2004).Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A.Plant Physiol, 135:507-515.
[34]Yamaguchi Y, Barona G, Ryan CA, Pearce G(2011).GmPep914,an eight-amino acid peptide isolated from soybean leaves,activates defense-related genes.Plant Physiol, 156:932-942.
[35]Yang G, Sun M, Wang Z, Hu Q, Guo J, Yu J, Lei C, Dang R(2023).Comparative Genomics Identifies the Evolutionarily Conserved Gene TPM3 as a Target of eca-miR-1 Involved in the Skeletal Muscle Development of Donkeys.Int J Mol Sci, 24:15440-15454.
[36]Yang YX, Ahammed GJ, Wu C, Fan SY, Zhou YH(2015).Crosstalk among Jasmonate,Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses.Curr Protein Pept Sci, 16:450-461.
[37]Ye w, Fan Y, Zhang Y, Rui C, Xu N, Zhang H, Wang J, Malik W, Han M, Zhao L, Lu X, Chen X, Chen C(2021).Zinc Finger transcription factor ZAT Family Genes confer multi-tolerances in Gossypium hirsutum L.J Cotton Res, 4:24-38.
[38]Yu K, Soares JM, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P(2013).A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.Cell Rep, 3:1266-1278.
[39]Yu TF, Hou ZH, Wang HL, Chang SY, Song XY, Zheng WJ, Zheng L, Wei JT, Lu ZW, Chen J, Zhou YB, Chen M, Sun SL, Jiang QY, Jin LG, Ma YZ, Xu ZS(2024).Soybean steroids improve crop abiotic stress tolerance and increase yield.Plant Biotechnol J, 22:2333-2347.
[40]Zhu Y, Hu X, Wang P, Wang H, Ge X, Li F, Hou Y(2022).GhODO1,an R2R3-type MYB transcription factor,positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway.Int J Biol Macromol, 201:580-591.
[41]Zulfiqar S, Farooq MA, Zhao T, Wang P, Tabusam J, Wang Y, Xuan S, Zhao J, Chen X, Shen S and Gu A.(2023).Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics.Int J Mol Sci, 24:2333-2347.
[42]代培红, 胡子曜, 李秀青, 雷建峰, 刘超, 刘晓东, 李月(2022).棉花黄萎病相关基因的克隆与功能分析.南方农业学报, 53:3020-3027.
[43]董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷(2020).转录因子调控植物萜类化合物生物合成研究进展.植物学报, 55:340-350.
[44]高升旗, 邵武奎, 赵准, 邵盘霞, 胡文冉, 黄全生(2023).类钙调磷酸酶亚基蛋白-调控棉花黄萎病抗性的功能分析.棉花学报棉花学报, 35:447-458.
[45]胡晓倩, 石志钰, 朱玉涛, 高琳颖, 王平, 王宏伟, 侯玉霞(2023).棉花基因调控棉花抗黄萎病机理的研究.植物保护, 49:39-47.
[46]胡子曜, 李秀青, 代培红, 雷建峰, 柳建飞, 赵燚, 邓嘉辉, 刘超, 刘晓东, 李月(2022).陆地棉细胞色素基因-黄萎病抗性功能验证.华北农学报, 37:72-81.
[47]李名江(2023).棉花、和-基因在抗黄萎病中的功能验证.硕士论文, 1:23-24.
[48]卢秀茹, 贾肖月, 牛佳慧(2018).中国棉花产业发展现状及展望.中国农业科学, 51:26-36.
[49]汪笑峰(2009).水稻细胞膜上非特异性脂质转移蛋白受体的研究.博士论文, 1:64-65.
[50]王健, 董俊哲, 陈浩, 郑丽莎, 王铭(2018).全球棉花进出口贸易分析及展望.棉纺织技术, 46:81-84.
[51]谢靖雯 曹潘杜(2024).植物类黄酮转运与积累机制的研究进展.植物学报, 59:463-480.
[52]张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳(2023).陆地棉基因的克隆及抗黄萎病功能分析.中国农业科技导报, 25:35-44.
文章导航

/