植物学报 ›› 2023, Vol. 58 ›› Issue (6): 917-925.DOI: 10.11983/CBB22228
冯晓晖1,2,3, 闫学彤2,3, 郑珂媛2,3, 周强1, 张伟中4, 王权勇4, 朱木兰2,3,*()
收稿日期:
2022-09-29
接受日期:
2023-02-28
出版日期:
2023-11-01
发布日期:
2023-11-27
通讯作者:
* E-mail: mlzhu@cemps.ac.cn
基金资助:
Xiaohui Feng1,2,3, Xuetong Yan2,3, Keyuan Zheng2,3, Qiang Zhou1, Weizhong Zhang4, Quanyong Wang4, Mulan Zhu2,3,*()
Received:
2022-09-29
Accepted:
2023-02-28
Online:
2023-11-01
Published:
2023-11-27
Contact:
* E-mail: mlzhu@cemps.ac.cn
摘要: 红豆杉(Taxus spp.)为国家一级濒危植物, 含有药用价值高的广谱抗癌成分紫杉醇, 但资源匮乏。为解决紫杉醇药源短缺问题, 该研究建立了红豆杉紫杉烷类离体富集体系。结果表明, 最佳吸收面扩大培养基配方为MS+2 mg·L-1 6-BA+0.4 mg·L-1 NAA+0.7 g·L-1脯氨酸, 扩大率达90%; 高频同步诱导率最高的培养基为DCR+1 mg·L-1 6-BA+0.1 mg·L-1 NAA+5 mg·L-1谷氨酰胺+1 g·L-1活性炭, 高频同步率达82.2%; 生物量扩增I期效果最佳培养基为MS+0.7 mg·L-1 6-BA+ 0.07 mg·L-1 NAA+0.1 mg·L-1苯丙氨酸+50 mg·L-1间苯三酚, 芽苗生物量为每株542 mg; 生物量扩增II期效果较好的培养基为MS+0.5 mg·L-1 6-BA+0.05 mg·L-1 NAA+0.1 mg·L-1苯丙氨酸+2 g·L-1活性炭, 芽苗生物量为每株1 612 mg。富集培养后, 组培材料中紫杉烷类含量远高于天然材料, 紫杉醇含量为天然材料的6.1倍; 巴卡亭III含量为天然材料的8.2倍; 10-去乙酰基巴卡亭III含量为天然材料的68.1倍。该研究首次建立了红豆杉紫杉烷离体富集体系, 突破了紫杉醇药源短缺的瓶颈。
冯晓晖, 闫学彤, 郑珂媛, 周强, 张伟中, 王权勇, 朱木兰. 富含紫杉烷类红豆杉的离体培养. 植物学报, 2023, 58(6): 917-925.
Xiaohui Feng, Xuetong Yan, Keyuan Zheng, Qiang Zhou, Weizhong Zhang, Quanyong Wang, Mulan Zhu. In vitro Culture of Taxus Rich in Taxanes. Chinese Bulletin of Botany, 2023, 58(6): 917-925.
Treatments | 75% ethanol (s) | Disinfectant (min) | Pollution rate (%) | Survival rate (%) |
---|---|---|---|---|
1 | 10 | 3 | 68.9±5.09a | 31.1±5.09f |
2 | 10 | 5 | 35.6±3.85c | 57.8±3.85bcd |
3 | 10 | 7 | 20.0±3.33de | 62.2±3.85bc |
4 | 30 | 3 | 54.4±5.09b | 45.6±5.09e |
5 | 30 | 5 | 25.6±5.09d | 74.4±5.09a |
6 | 30 | 7 | 12.2±1.92ef | 64.4±8.38b |
7 | 50 | 3 | 41.1±5.09c | 51.1±1.92de |
8 | 50 | 5 | 16.7±3.33e | 64.4±5.09b |
9 | 50 | 7 | 5.6±1.92f | 53.3±5.77de |
表1 消毒处理对外植体污染率与成活率的影响
Table 1 Effects of disinfection treatments on the contamination rate and survival rate of explants
Treatments | 75% ethanol (s) | Disinfectant (min) | Pollution rate (%) | Survival rate (%) |
---|---|---|---|---|
1 | 10 | 3 | 68.9±5.09a | 31.1±5.09f |
2 | 10 | 5 | 35.6±3.85c | 57.8±3.85bcd |
3 | 10 | 7 | 20.0±3.33de | 62.2±3.85bc |
4 | 30 | 3 | 54.4±5.09b | 45.6±5.09e |
5 | 30 | 5 | 25.6±5.09d | 74.4±5.09a |
6 | 30 | 7 | 12.2±1.92ef | 64.4±8.38b |
7 | 50 | 3 | 41.1±5.09c | 51.1±1.92de |
8 | 50 | 5 | 16.7±3.33e | 64.4±5.09b |
9 | 50 | 7 | 5.6±1.92f | 53.3±5.77de |
Treatments | NAA (mg·L-1) | 6-BA (mg·L-1) | Proline (g·L-1) | Expansion rate (%) |
---|---|---|---|---|
1 | 0.1 | 1 | 0 | 28.9±5.09g |
2 | 0.1 | 2 | 0.1 | 53.3±8.82ef |
3 | 0.1 | 3 | 0.3 | 62.3±2.02de |
4 | 0.2 | 1 | 0.5 | 58.9±5.09ef |
5 | 0.2 | 2 | 0.7 | 76.7±6.67abc |
6 | 0.2 | 3 | 1 | 86.7±5.77ab |
7 | 0.3 | 1 | 0 | 47.8±6.93f |
8 | 0.3 | 2 | 0.1 | 51.1±15.40ef |
9 | 0.3 | 3 | 0.3 | 86.7±5.77ab |
10 | 0.4 | 1 | 0.5 | 55.6±5.09ef |
11 | 0.4 | 2 | 0.7 | 90.0±6.67a |
12 | 0.4 | 3 | 1 | 63.3±3.33cde |
13 | 0.5 | 1 | 0 | 52.2±1.92ef |
14 | 0.5 | 2 | 0.1 | 75.6±8.39bcd |
15 | 0.5 | 3 | 0.3 | 81.1±10.18ab |
16 | 0.6 | 1 | 0.5 | 64.4±11.71cde |
17 | 0.6 | 2 | 0.7 | 57.8±6.94ef |
18 | 0.6 | 3 | 1 | 46.7±5.77f |
表2 不同添加剂组合对底部吸收面的影响
Table 2 Effect of different additive combinations on the bottom absorbent surface
Treatments | NAA (mg·L-1) | 6-BA (mg·L-1) | Proline (g·L-1) | Expansion rate (%) |
---|---|---|---|---|
1 | 0.1 | 1 | 0 | 28.9±5.09g |
2 | 0.1 | 2 | 0.1 | 53.3±8.82ef |
3 | 0.1 | 3 | 0.3 | 62.3±2.02de |
4 | 0.2 | 1 | 0.5 | 58.9±5.09ef |
5 | 0.2 | 2 | 0.7 | 76.7±6.67abc |
6 | 0.2 | 3 | 1 | 86.7±5.77ab |
7 | 0.3 | 1 | 0 | 47.8±6.93f |
8 | 0.3 | 2 | 0.1 | 51.1±15.40ef |
9 | 0.3 | 3 | 0.3 | 86.7±5.77ab |
10 | 0.4 | 1 | 0.5 | 55.6±5.09ef |
11 | 0.4 | 2 | 0.7 | 90.0±6.67a |
12 | 0.4 | 3 | 1 | 63.3±3.33cde |
13 | 0.5 | 1 | 0 | 52.2±1.92ef |
14 | 0.5 | 2 | 0.1 | 75.6±8.39bcd |
15 | 0.5 | 3 | 0.3 | 81.1±10.18ab |
16 | 0.6 | 1 | 0.5 | 64.4±11.71cde |
17 | 0.6 | 2 | 0.7 | 57.8±6.94ef |
18 | 0.6 | 3 | 1 | 46.7±5.77f |
图1 红豆杉组织培养 (A) 底部吸收面扩大正面观(bar=10 mm); (B) 底部吸收面扩大底面观(bar=5 mm); (C) 腋芽诱导(bar=10 mm); (D) 不定芽原基诱导(bar=10 mm); (E) 高频同步培养(bar=10 mm); (F) 不定芽伸长(bar=10 mm); (G) 生物量扩增(bar=20 mm)
Figure 1 Tissue culture of Taxus (A) Image of bottom absorbent surface expands from the front (bar=10 mm); (B) Image of bottom absorbent surface expands from the underside (bar=5 mm); (C) Axillary bud induction (bar=10 mm); (D) The original basis of adventitious bud induction (bar=10 mm); (E) High-frequency synchronous growth (bar=10 mm); (F) Adventitious bud elongation (bar=10 mm); (G) Biomass amplification (bar=20 mm)
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Axillary buds induction rate (%) |
---|---|---|---|
1 | 0.5 | 0.05 | 63.3±3.33ef |
2 | 0.5 | 0.1 | 48.9±5.09g |
3 | 1 | 0.05 | 81.1±1.92ab |
4 | 1 | 0.1 | 88.9±5.09a |
5 | 1 | 0.2 | 68.9±5.09cde |
6 | 1 | 0.3 | 64.4±5.09ef |
7 | 2 | 0.05 | 73.3±3.34bcd |
8 | 2 | 0.1 | 75.6±3.85bc |
9 | 2 | 0.2 | 65.6±5.09def |
10 | 2 | 0.3 | 58.9±5.09f |
11 | 3 | 0.1 | 60.0±3.33f |
12 | 3 | 0.2 | 43.3±3.34g |
表3 不同浓度6-BA与NAA对腋芽诱导的影响
Table 3 Effect of different concentrations of 6-BA and NAA on axillary bud induction
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Axillary buds induction rate (%) |
---|---|---|---|
1 | 0.5 | 0.05 | 63.3±3.33ef |
2 | 0.5 | 0.1 | 48.9±5.09g |
3 | 1 | 0.05 | 81.1±1.92ab |
4 | 1 | 0.1 | 88.9±5.09a |
5 | 1 | 0.2 | 68.9±5.09cde |
6 | 1 | 0.3 | 64.4±5.09ef |
7 | 2 | 0.05 | 73.3±3.34bcd |
8 | 2 | 0.1 | 75.6±3.85bc |
9 | 2 | 0.2 | 65.6±5.09def |
10 | 2 | 0.3 | 58.9±5.09f |
11 | 3 | 0.1 | 60.0±3.33f |
12 | 3 | 0.2 | 43.3±3.34g |
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Adventitious buds induction rate (%) |
---|---|---|---|
1 | 0.2 | 0.02 | 32.2±5.09e |
2 | 0.4 | 0.04 | 47.8±3.85d |
3 | 0.6 | 0.06 | 62.2±1.92bc |
4 | 0.8 | 0.08 | 68.9±3.84b |
5 | 1.0 | 0.10 | 77.8±1.92a |
6 | 1.2 | 0.12 | 67.8±5.09bc |
7 | 1.4 | 0.14 | 61.1±3.84c |
表4 不同浓度6-BA与NAA对不定芽原基诱导的影响
Table 4 Effect of different concentration of 6-BA and NAA on the original basis of adventitious bud induction
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Adventitious buds induction rate (%) |
---|---|---|---|
1 | 0.2 | 0.02 | 32.2±5.09e |
2 | 0.4 | 0.04 | 47.8±3.85d |
3 | 0.6 | 0.06 | 62.2±1.92bc |
4 | 0.8 | 0.08 | 68.9±3.84b |
5 | 1.0 | 0.10 | 77.8±1.92a |
6 | 1.2 | 0.12 | 67.8±5.09bc |
7 | 1.4 | 0.14 | 61.1±3.84c |
Treatments | NAA (mg·L-1) | 6-BA (mg·L-1) | High-frequency synchronous growth rate (%) | Average number of adventitious buds |
---|---|---|---|---|
1 | 0.05 | 0.25 | 38.9±5.09e | 12.2±2.65c |
2 | 0.05 | 0.5 | 55.6±5.09cd | 14.2±2.78bc |
3 | 0.1 | 0.5 | 50.0±6.67d | 20.1±3.66b |
4 | 0.1 | 1 | 82.2±1.92a | 31.5±2.93a |
5 | 0.2 | 1 | 72.2±3.85b | 33.4±3.67a |
6 | 0.2 | 2 | 63.3±3.34bc | 29.7±2.94a |
表5 复合配方对不定芽原基高频同步发生的影响
Table 5 Effect of different medium formulations on the original basis of adventitious bud high-frequency synchronous growth
Treatments | NAA (mg·L-1) | 6-BA (mg·L-1) | High-frequency synchronous growth rate (%) | Average number of adventitious buds |
---|---|---|---|---|
1 | 0.05 | 0.25 | 38.9±5.09e | 12.2±2.65c |
2 | 0.05 | 0.5 | 55.6±5.09cd | 14.2±2.78bc |
3 | 0.1 | 0.5 | 50.0±6.67d | 20.1±3.66b |
4 | 0.1 | 1 | 82.2±1.92a | 31.5±2.93a |
5 | 0.2 | 1 | 72.2±3.85b | 33.4±3.67a |
6 | 0.2 | 2 | 63.3±3.34bc | 29.7±2.94a |
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Adventitious bud elongation rate (%) | Average seedling height (mm) |
---|---|---|---|---|
1 | 0.1 | 0.01 | 35.5±6.94c | 17.3±0.85d |
2 | 0.3 | 0.03 | 40.0±3.33c | 22.7±1.34c |
3 | 0.5 | 0.05 | 74.4±5.09b | 28.4±0.94b |
4 | 0.7 | 0.07 | 92.2±1.92a | 33.4±1.56a |
5 | 1 | 0.1 | 80.0±5.77b | 29.9±0.69ab |
表6 培养基配方对不定芽伸长的影响
Table 6 Effect of medium formulations on the elongation of adventitious buds
Treatments | 6-BA (mg·L-1) | NAA (mg·L-1) | Adventitious bud elongation rate (%) | Average seedling height (mm) |
---|---|---|---|---|
1 | 0.1 | 0.01 | 35.5±6.94c | 17.3±0.85d |
2 | 0.3 | 0.03 | 40.0±3.33c | 22.7±1.34c |
3 | 0.5 | 0.05 | 74.4±5.09b | 28.4±0.94b |
4 | 0.7 | 0.07 | 92.2±1.92a | 33.4±1.56a |
5 | 1 | 0.1 | 80.0±5.77b | 29.9±0.69ab |
Treatments | PG (mg·L-1) | Average stem thickness (mm) | Average seedling biomass (mg) |
---|---|---|---|
1 | 0 | 0.6±0.05c | 283±15d |
2 | 20 | 0.8±0.10b | 483±12b |
3 | 50 | 1.1±0.15a | 542±13a |
4 | 80 | 0.9±0.06ab | 490±15b |
5 | 100 | 0.8±0.15bc | 353±20c |
表7 不同浓度间苯三酚(PG)对红豆杉生物量扩增I期的影响
Table 7 Effects of different concentrations of phloroglucinol (PG) on Taxus biomass amplification phase I
Treatments | PG (mg·L-1) | Average stem thickness (mm) | Average seedling biomass (mg) |
---|---|---|---|
1 | 0 | 0.6±0.05c | 283±15d |
2 | 20 | 0.8±0.10b | 483±12b |
3 | 50 | 1.1±0.15a | 542±13a |
4 | 80 | 0.9±0.06ab | 490±15b |
5 | 100 | 0.8±0.15bc | 353±20c |
Treatments | AC (g·L-1) | Average seedling height (mm) | Average seedling biomass (mg) |
---|---|---|---|
1 | 0 | 7.6±0.15d | 1318±12d |
2 | 1 | 7.9±0.21d | 1434±18c |
3 | 1.5 | 9.8±0.06b | 1496±24b |
4 | 2 | 10.4±0.21a | 1612±23a |
5 | 2.5 | 9.9±0.15b | 1531±15b |
6 | 3 | 8.7±0.12c | 1423±18c |
表8 不同浓度活性炭(AC)对红豆杉生物量扩增II期的影响
Table 8 Effects of different concentrations of active charcoal (AC) on biomass amplification phase II
Treatments | AC (g·L-1) | Average seedling height (mm) | Average seedling biomass (mg) |
---|---|---|---|
1 | 0 | 7.6±0.15d | 1318±12d |
2 | 1 | 7.9±0.21d | 1434±18c |
3 | 1.5 | 9.8±0.06b | 1496±24b |
4 | 2 | 10.4±0.21a | 1612±23a |
5 | 2.5 | 9.9±0.15b | 1531±15b |
6 | 3 | 8.7±0.12c | 1423±18c |
图2 紫杉烷类标准品和红豆杉组培样品的液相色谱图 (A) 标准品紫杉醇色谱图; (B) 样品紫杉醇色谱图; (C) 标准品Baccatin III色谱图; (D) 样品Baccatin III色谱图; (E) 标准品10-DAB色谱图; (F) 样品10-DAB色谱图
Figure 2 HPLC image of taxane standards and Taxus tissue culture samples (A) HPLC of standard paclitaxel; (B) HPLC of sample paclitaxel; (C) HPLC of standard Baccatin III; (D) HPLC of sample Baccatin III; (E) HPLC of standard 10-DAB; (F) HPLC of sample 10-DAB
Paclitaxel (μg·g-1) | Baccatin III (μg·g-1) | 10-DAB (μg·g-1) | |
---|---|---|---|
Natural materials | 15.7 | 16.6 | 29.9 |
Tissue culture materials | 95.4 | 135.9 | 2036.0 |
表9 紫杉醇和紫杉烷类化合物含量
Table 9 Contents of paclitaxel and taxane compounds
Paclitaxel (μg·g-1) | Baccatin III (μg·g-1) | 10-DAB (μg·g-1) | |
---|---|---|---|
Natural materials | 15.7 | 16.6 | 29.9 |
Tissue culture materials | 95.4 | 135.9 | 2036.0 |
[1] |
董明珠, 王立涛, 吕慕洁, 孟冬, 杨春雨, 赵春建, 付玉杰, 杨清 (2020). 濒危植物野生东北红豆杉群落特征及保护策略. 植物研究 40, 416-423.
DOI |
[2] | 丰美静, 张恺恺, 黄中文, 邱德有, 陈段芬, 杨艳芳 (2020). 东北红豆杉温室扦插繁殖试验. 北方园艺 (13), 65-70. |
[3] | 何晓明 (2011). 天然抗癌药紫杉醇及其半合成类似物的研究进展. 中国实用医药 6(24), 236-237. |
[4] | 贺新强, 林金星, 胡玉熹, 王献溥, 李法曾 (1996). 中国松杉类植物濒危等级划分的比较. 生物多样性 4, 47-53. |
[5] |
焦骄, 刘婧, 付玉杰, 王馨, 盖庆岩, 鹿瑶, 徐晓杰, 王紫莹 (2021). 3种红豆杉茎段腋芽启动组培繁育技术研究. 植物研究 41, 721-728.
DOI |
[6] | 李干雄, 李志良, 曾腾锋, 何艳宇, 黄巧明 (2008). 几种促进剂的添加时间对中国红豆杉细胞悬浮培养紫杉醇合成的影响. 天然产物研究与开发 20, 876-879. |
[7] | 梁敬钰 (1993). 国外紫杉醇研究进展. 生物工程进展 13(4), 19-20. |
[8] | 师春娟, 李平英, 于永明, 董菊兰, 韩云花, 高淑琴 (2007). 红豆杉愈伤组织诱导试验初探. 甘肃林业科技 32(4), 19-22. |
[9] | 王威, 白江平, 王清, 黄惠英 (2019). 中国红豆杉植株再生体系优化. 草原与草坪 39(5), 102-106. |
[10] | 王莹, 王姝, 刘盈盈, 刘燕, 向准, 任春光, 孙超 (2016). 生物技术在药用植物次生代谢产物方面的应用进展. 现代园艺 39(11), 14-16. |
[11] | 吴秀兰, 贾艳, 朱波, 周杰 (2014). 天然抗癌药物紫杉醇的研究进展. 中国野生植物资源 33(5), 42-45, 60. |
[12] | 杨文婷, 匡倩 (2016). 红豆杉组织培养的防褐变措施研究. 北方园艺 (17), 111-114. |
[13] | 袁云香 (2018). 硅对南方红豆杉愈伤组织诱导及增殖培养的影响. 科学技术与工程 18(35), 121-123. |
[14] | 翟合欢 (2010). 曼地亚红豆杉组培快繁技术的研究. 硕士论文. 合肥: 安徽农业大学. pp. 1-57. |
[15] | 张翔宇, 杜亚填, 龚雪元 (2012). 南方红豆杉愈伤组织生长动力学及紫杉醇代谢动力学研究. 中草药 43, 990-994. |
[16] | 赵春芳, 余龙江, 刘智, 孙友平, 李文兵 (2005). 中国红豆杉中主要紫杉烷类物质的分布研究. 林产化学与工业 25, 89-93. |
[17] | 周华, 朱祺, 杨艳芳, 余发新, 邱德有 (2014). 红豆杉分子生物学研究进展. 植物生理学报 50, 373-381. |
[18] | Furmanowa M, Glowniak K, Syklowska-Baranek K, Zgórka G, Józefczyk A (1997). Effect of picloram and methyl jasmonate on growth and taxane accumulation in callus culture of Taxus × media var. hatfieldii. Plant Cell Tissue Organ Cult 49, 75-79. |
[19] | Li YL, Huang SW, Zhang JY, Bu FJ, Lin T, Zhang ZH, Xiong XY (2016). A protocol of homozygous haploid callus induction from endosperm of Taxus chinensis Rehd. var. mairei. Springerplus 5, 659. |
[20] | Ross S, Castillo A (2009). Mass propagation of Vaccinium corymbosum in bioreactors. Agrociencia 13, 1-8. |
[21] |
Ross S, Castillo A (2010). Micropropagation of Achyrocline flaccida (Weinm.) DC. in liquid culture media. Agrociencia 14, 1-7.
DOI URL |
[22] | Ross S, Grasso R (2010). In vitro propagation of ‘Guayabo del país’ (Acca sellowiana (Berg.) Burret). Fruit Veg Cereal Sci Biotechnol 4, 83-87. |
[23] |
Sarmadi M, Karimi N, Palazón J, Ghassempour A, Mirjalili MH (2019). Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell Tissue Organ Cult 137, 319-328.
DOI |
[24] |
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971). Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93, 2325-2327.
DOI PMID |
[1] | 宋垚彬, 徐力, 段俊鹏, 张卫军, 申屠晓露, 李天翔, 臧润国, 董鸣. 西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局[J]. 生物多样性, 2020, 28(3): 269-276. |
[2] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[3] | 李永成;陶文沂. 内生真菌培养液对东北红豆杉细胞生长及紫杉醇合成的影响[J]. 植物学报, 2008, 25(05): 552-558. |
[4] | 付玉杰 孙蕊 李双明 张然 祖元刚. 东北红豆杉可再生部位紫杉醇含量时空动态变化规律[J]. 植物学报, 2007, 24(04): 465-469. |
[5] | 周志强, 刘彤, 袁继连. 黑龙江穆棱天然东北红豆杉种群资源特征研究[J]. 植物生态学报, 2004, 28(4): 476-482. |
[6] | 芦站根, 周文杰, 赵昌琼, 陈京, 谈锋. 曼地亚红豆杉对自然降温的适应性研究[J]. 植物生态学报, 2004, 28(1): 73-77. |
[7] | 仇燕 贾宁 王丽 王刚. 诱导子在红豆杉细胞培养生产紫杉醇中的应用研究进展[J]. 植物学报, 2003, 20(02): 184-189. |
[8] | 王艇 苏应娟 朱建明 黄超 李雪雁. 红豆杉科及相关类群rbc L基因PCR-RFLP分析[J]. 植物学报, 2001, 18(06): 714-721. |
[9] | 张佐玉. 红豆杉属幼苗繁殖技术的研究进展[J]. 植物学报, 2000, 17(03): 225-231. |
[10] | 陈可咏. 东北红豆杉的核型分析[J]. 植物学报, 1996, 13(专辑): 46-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||