植物学报 ›› 2020, Vol. 55 ›› Issue (5): 588-595.DOI: 10.11983/CBB20019
岳建华1,3, 董艳2, 王小画1, 孙佩霞1, 王思颖1, 张新年1, 张琰1,3,*()
收稿日期:
2020-02-10
接受日期:
2020-05-08
出版日期:
2020-09-01
发布日期:
2020-09-03
通讯作者:
张琰
作者简介:
E-mail: zhy8010878@163.com基金资助:
Jianhua Yue1,3, Yan Dong2, Xiaohua Wang1, Peixia Sun1, Siying Wang1, Xinnian Zhang1, Yan Zhang1,3,*()
Received:
2020-02-10
Accepted:
2020-05-08
Online:
2020-09-01
Published:
2020-09-03
Contact:
Yan Zhang
摘要: 以早花百子莲(Agapanthus praecox)叶片为外植体, 建立了器官发生和胚胎发生离体再生体系, 并对移栽驯化基质进行了初步筛选。结果表明, 毒莠定(PIC)对叶片愈伤组织诱导效果良好, 最适培养基为MS+2.0 mg·L -1 PIC; 叶片组织分生能力决定愈伤组织诱导效果, 1-2片新叶基部愈伤组织诱导率可达85.71%, 叶片分生区0-0.5 cm愈伤组织诱导率为66.48%, 叶片横切面中部诱导效果优于边缘。不定芽诱导最适培养基为MS+1.5 mg·L -1 PIC+0.3 mg·L -1 6-BA, 诱导率达80.27%。体细胞胚诱导培养基为MS, 0.05 mg·L -1多效唑或1.0 mg·L -1 ABA均对体胚诱导具有显著促进作用。1.0 mg·L -1 6-BA对幼苗增殖有利, 器官发生和胚胎发生途径幼苗增殖系数分别为2.23和2.93。草炭:珍珠岩:蛭石=1:1:1 (v/v/v)为早花百子莲移栽驯化的最佳基质, 成活率达100%。该研究建立了早花百子莲叶片外植体再生体系, 丰富了百子莲快繁技术体系, 可为其它单子叶植物离体再生体系建立提供参考。
岳建华, 董艳, 王小画, 孙佩霞, 王思颖, 张新年, 张琰. 早花百子莲叶片器官发生和胚胎发生再生体系的建立. 植物学报, 2020, 55(5): 588-595.
Jianhua Yue, Yan Dong, Xiaohua Wang, Peixia Sun, Siying Wang, Xinnian Zhang, Yan Zhang. A Regeneration System for Organogenesis and Somatic Embryogenesis Using Leaves of Agapanthus praecox as Explants. Chinese Bulletin of Botany, 2020, 55(5): 588-595.
PIC concentration (mg·L-1) | Leaf maturity | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | 1-2 | 52.38 ab | 0.93 b |
3-4 | 42.86 ab | 0.67 cd | |
5-6 | 38.10 b | 0.63 de | |
2.0 | 1-2 | 85.71 a | 1.07 a |
3-4 | 57.14 ab | 0.77 c | |
5-6 | 38.10 b | 0.53 e |
表1 叶片成熟度对愈伤组织诱导的影响
Table 1 Effects of leaf maturity on callus induction
PIC concentration (mg·L-1) | Leaf maturity | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | 1-2 | 52.38 ab | 0.93 b |
3-4 | 42.86 ab | 0.67 cd | |
5-6 | 38.10 b | 0.63 de | |
2.0 | 1-2 | 85.71 a | 1.07 a |
3-4 | 57.14 ab | 0.77 c | |
5-6 | 38.10 b | 0.53 e |
PIC concentration (mg·L-1) | Leaf meristematic position (cm) | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | 0.0-0.5 | 61.90 a | 0.67 ab |
0.5-1.0 | 42.86 ab | 0.57 b | |
1.0-1.5 | 38.09 ab | 0.57 b | |
2.0 | 0.0-0.5 | 66.48 a | 0.73 a |
0.5-1.0 | 47.62 ab | 0.70 ab | |
1.0-1.5 | 19.05 b | 0.60 ab |
表2 叶片分生区位置对愈伤组织诱导的影响
Table 2 Effects of different leaf meristematic zones on callus induction
PIC concentration (mg·L-1) | Leaf meristematic position (cm) | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | 0.0-0.5 | 61.90 a | 0.67 ab |
0.5-1.0 | 42.86 ab | 0.57 b | |
1.0-1.5 | 38.09 ab | 0.57 b | |
2.0 | 0.0-0.5 | 66.48 a | 0.73 a |
0.5-1.0 | 47.62 ab | 0.70 ab | |
1.0-1.5 | 19.05 b | 0.60 ab |
PIC concentration (mg·L-1) | Leaf transection | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | Middle | 80.95 a | 0.77 a |
Edge | 76.19 a | 0.67 ab | |
2.0 | Middle | 57.14 a | 0.67 ab |
Edge | 42.86 a | 0.57 b |
表3 叶片横切面部位对愈伤组织诱导的影响
Table 3 Effects of leaf transection on callus induction
PIC concentration (mg·L-1) | Leaf transection | Induction rate (%) | Callus size (cm) |
---|---|---|---|
1.5 | Middle | 80.95 a | 0.77 a |
Edge | 76.19 a | 0.67 ab | |
2.0 | Middle | 57.14 a | 0.67 ab |
Edge | 42.86 a | 0.57 b |
Type | Concentration (mg·L-1) | Induction rate (%) | Adventitious bud length (cm) |
---|---|---|---|
CK | 0.0 | 12.93 e | 1.69 a |
6-BA | 0.1 | 55.78 bc | 1.42 c |
0.3 | 80.27 a | 1.53 bc | |
0.5 | 73.47 ab | 1.59 ab | |
KT | 0.5 | 53.74 c | 1.49 bc |
1.0 | 44.22 cd | 1.52 bc | |
2.0 | 33.33 d | 1.19 c |
表4 6-BA和KT对不定芽诱导的影响
Table 4 Effects of 6-BA and KT on adventitious bud induction
Type | Concentration (mg·L-1) | Induction rate (%) | Adventitious bud length (cm) |
---|---|---|---|
CK | 0.0 | 12.93 e | 1.69 a |
6-BA | 0.1 | 55.78 bc | 1.42 c |
0.3 | 80.27 a | 1.53 bc | |
0.5 | 73.47 ab | 1.59 ab | |
KT | 0.5 | 53.74 c | 1.49 bc |
1.0 | 44.22 cd | 1.52 bc | |
2.0 | 33.33 d | 1.19 c |
Treatment | Concentration (mg·L-1) | Induction number |
---|---|---|
CK | 0.00 | 19.00 bc |
PIC | 1.00 | 1.63 e |
NPA | 1.00 | 11.13 cd |
GA4+7 | 0.05 | 15.00 c |
PBZ | 0.05 | 29.25 ab |
ABA | 1.00 | 40.97 a |
表5 植物生长调节物质(PGRs)对细胞胚诱导的影响
Table 5 Effects of plant growth regulators (PGRs) on somatic embryo induction
Treatment | Concentration (mg·L-1) | Induction number |
---|---|---|
CK | 0.00 | 19.00 bc |
PIC | 1.00 | 1.63 e |
NPA | 1.00 | 11.13 cd |
GA4+7 | 0.05 | 15.00 c |
PBZ | 0.05 | 29.25 ab |
ABA | 1.00 | 40.97 a |
Type | 6-BA concentration (mg·L-1) | Plantlets number | Root number |
---|---|---|---|
Organogenetic plantlets | 1.0 | 11.17 a | 4.67 c |
2.0 | 10.50 ab | 5.67 bc | |
3.0 | 7.08 b | 5.33 bc | |
Somatic plantlets | 1.0 | 14.67 a | 9.33 a |
2.0 | 12.33 a | 7.67 ab | |
3.0 | 11.33 a | 5.33 bc |
表6 6-BA对幼苗增殖的影响
Table 6 Effects of 6-BA on plantlets proliferation
Type | 6-BA concentration (mg·L-1) | Plantlets number | Root number |
---|---|---|---|
Organogenetic plantlets | 1.0 | 11.17 a | 4.67 c |
2.0 | 10.50 ab | 5.67 bc | |
3.0 | 7.08 b | 5.33 bc | |
Somatic plantlets | 1.0 | 14.67 a | 9.33 a |
2.0 | 12.33 a | 7.67 ab | |
3.0 | 11.33 a | 5.33 bc |
Cultivation medium | Survival rate (%) | Leaf number | Plant height (cm) |
---|---|---|---|
Commercial substrate | 100.00 | 4.61 | 9.04 |
Peat:sand=1:3 (v/v) | 88.89 | 5.38 | 10.30 |
Peat:vermiculite=1:2 (v/v) | 94.44 | 4.51 | 8.07 |
Perlite:vermiculite=1:1 (v/v) | 100.00 | 5.28 | 8.56 |
Peat:perlite:vermiculite=1:1:1(v/v/v) | 100.00 | 5.56 | 11.77 |
表7 不同基质对幼苗移栽的影响
Table 7 Effects of cultivation medium on plantlets transplanting
Cultivation medium | Survival rate (%) | Leaf number | Plant height (cm) |
---|---|---|---|
Commercial substrate | 100.00 | 4.61 | 9.04 |
Peat:sand=1:3 (v/v) | 88.89 | 5.38 | 10.30 |
Peat:vermiculite=1:2 (v/v) | 94.44 | 4.51 | 8.07 |
Perlite:vermiculite=1:1 (v/v) | 100.00 | 5.28 | 8.56 |
Peat:perlite:vermiculite=1:1:1(v/v/v) | 100.00 | 5.56 | 11.77 |
图1 早花百子莲以叶片为外植体诱导植株再生 (A) 叶片外植体; (B) 愈伤组织; (C) 不定芽诱导; (D) 胚性愈伤组织诱导; (E) 不定芽见光后转绿; (F) 球形胚; (G) 器官途径植株再生; (H) 胚胎途径经棒状胚阶段的植株再生; (I) 器官苗增殖; (J) 器官苗根系; (K) 体胚苗增殖; (L) 体胚苗根系; (M) 再生幼苗移栽与驯化; (N) 移栽苗根系。(A)-(D) Bars=0.5 cm; (E)-(L) Bars=1 cm; (M) Bar=5 cm; (N) Bar=10 cm
Figure 1 Plant regeneration of Agapanthus praecox via leaf explants (A) Leaf explants; (B) Callus; (C) Adventitious bud induction; (D) Embryogenic callus induction; (E) Adventitious bud turns green when exposure to light; (F) Globular embryos; (G) Plant regeneration via organogenesis; (H) Plant regeneration via club-shaped embryo in somatic embryogenesis; (I) Proliferation of plantlets via organogenesis; (J) The root system of plantlets via organogenesis; (K) Proliferation of plantlets via somatic embryogenesis; (L) The root system of plantlets via somatic embryogenesis; (M) Transplanting and acclimatization of regenerated plantlets; (N) The root system of transplanted plantlets. (A)-(D) Bars= 0.5 cm; (E)-(L) Bars=1 cm; (M) Bar=5 cm; (N) Bar=10 cm
[1] | 陈香波, 陆亮, 钱又宇, 范宇婷 ( 2016). 百子莲属种质资源及园林开发应用. 中国园林 32(8), 99-105. |
[2] | 何叶, 任丽, 孙海龙, 张洁, 邹梦雯, 张荻 ( 2014). 百子莲愈伤组织诱导体系的优化. 西南农业学报 27, 1237-1242. |
[3] | 胡仲义, 何月秋 ( 2011). 百子莲组织培养及植株再生研究. 北方园艺 ( 10), 118-120. |
[4] | 康玲 ( 2009). 百子莲的再生体系试验初报. 现代园艺(12), 7-8, 25. |
[5] | 李黎, 张悦 ( 2014). 外植体类型及年龄对蓝靛果忍冬诱导分化的影响. 林业科技 39(4), 14-15. |
[6] | 刘芳伊 ( 2013). 单叶刺槐和百子莲组培快繁体系建立. 硕士论文. 保定: 河北农业大学. pp. 17-19. |
[7] | 彭海峰, 曹友培, 俞新华, 赵晟, 黄晓柯 ( 2007). 仙茅叶片的组织培养及其细胞学观察. 中草药 38, 265-269. |
[8] | 王文静, 王鹏, 李伟强 ( 2012). 外植体类型和植物生长调节剂浓度对红金银花愈伤组织诱导的影响. 湖北农业科学 51, 4391-4393. |
[9] | 杨舟, 吕可, 吕珊, 王俊杰, 张荻 ( 2019). 百子莲2个ARF基因与2个Aux/IAA基因的全长克隆与序列分析. 浙江农业学报 31, 86-97. |
[10] | 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷 ( 2018). 欧洲百合愈伤组织诱导及植株再生体系的建立. 植物学报 53, 840-847. |
[11] | 邹梦雯 ( 2015). 毒莠定( PIC)调控百子莲愈伤组织胚性诱导与保持生理生化基础的研究. 硕士论文. 上海: 上海交通大学. pp. 64-66. |
[12] |
Banjac N, Vinterhalter B, Krstić-Milošević D, Milojević J, Tubić L, Ghalawenji N, Zdravković-Korać S ( 2019). Somatic embryogenesis and shoot organogenesis from the hypocotyl slices and free radical scavenging activity of regenerants of collard greens (Brassica oleracea L. var. acephala). Plant Cell Tissue Organ Cult 137, 613-626.
DOI URL |
[13] |
Bouamama B, Ben Salem A, Ben Youssef F, Chaieb S, Jaafoura MH, Mliki A, Ghorbel A ( 2011). Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” ( Hordeum vulgare L.). In Vitro Cell Dev Biol Plant 47, 321-327.
DOI URL |
[14] |
Fehér A, Pasternak TP, Dudits D ( 2003). Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74, 201-228.
DOI URL |
[15] |
Guo F, Zhang HD, Liu W, Hu XM, Han N, Qian Q, Xu L, Bian HW ( 2018). Callus initiation from root explants employs different strategies in rice and Arabidopsis. Plant Cell Physiol 59, 1782-1789.
DOI URL PMID |
[16] |
Guo HH, Guo HX, Zhang L, Fan YJ, Fan YP, Zeng FC ( 2019). SELTP-assembled battery drives totipotency of somatic plant cell. Plant Biotechnol J 17, 1188-1190.
DOI URL PMID |
[17] |
Hu B, Zhang GF, Liu W, Shi JM, Wang H, Qi MF, Li JQ, Qin P, Ruan Y, Huang H, Zhang YJ, Xu L ( 2017). Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4, 132-139.
DOI URL PMID |
[18] |
Malik MG ( 2008). Comparison of different liquid/solid culture systems in the production of somatic embryos from Narcissus L. ovary explants. Plant Cell Tissue Organ Cult 94, 337-345.
DOI URL |
[19] |
Manchanda P, Gosal SS ( 2012). Effect of activated charcoal, carbon sources and gelling agents on direct somatic embryogenesis and regeneration in sugarcane via leaf roll segments. Sugar Tech 14, 168-173.
DOI URL |
[20] |
Menke-Milczarek I, Zimny J ( 2001). NH4+ and NO3- requirement for wheat somatic embryogenesis. Acta Physiol Plant 23, 37-42.
DOI URL |
[21] |
Pedrali-Noy G, Bernacchia G, do Rosario Alvelos M, Cella R ( 2003). Daucus carota cells contain specific DNA methyltransferase inhibitors that interfere with somatic embryogenesis. Plant Biol 5, 383-392.
DOI URL |
[22] |
Ptak A, Bach A ( 2007). Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. In Vitro Cell Dev Biol Plant 43, 35-39.
DOI URL |
[23] |
Rao K, Chodisetti B, Gandi S, Mangamoori LN, Giri A ( 2011). Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis. Appl Biochem Biotechnol 165, 1366-1378.
DOI URL PMID |
[24] |
Sugimoto K, Jiao YL, Meyerowitz EM ( 2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463-471.
DOI URL PMID |
[25] |
Yang L, Wei C, Huang C, Liu HN, Zhang DY, Shen HL, Li YH ( 2019). Role of hydrogen peroxide in stress-induced programmed cell death during somatic embryogenesis in Fraxinus mandshurica. J For Res 30, 767-777.
DOI URL |
[26] |
Zhang N, Fang W, Shi Y, Liu QQ, Yang HY, Gui RY, Lin XC ( 2010). Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii. Plant Cell Tissue Organ Cult 103, 325-332.
DOI URL |
[1] | 刘承武, 赵忠. 豆科植物SHR-SCR模块——根瘤“奠基细胞”的命运推手[J]. 植物学报, 2020, 55(6): 661-665. |
[2] | 张俊红, 张守攻, 吴涛, 韩素英, 杨文华, 齐力旺. 落叶松体胚发育中5个miRNA前体与成熟体的表达[J]. 植物学报, 2012, 47(5): 462-473. |
[3] | 崔永坤, 徐启江, 孙永华, 孟征. 基部被子植物雪香兰(金粟兰科)单性花的形态发生和发育[J]. 植物学报, 2011, 46(5): 489-497. |
[4] | 钟原, 成仿云, 秦磊. 分生结节: 一种有价值的植株再生途径[J]. 植物学报, 2011, 46(3): 350-360. |
[5] | 郁文彬;蔡杰;王红;陈建群. 马先蒿属植物花冠分化与繁殖适应的研究进展[J]. 植物学报, 2008, 25(04): 392-400. |
[6] | 武秀明;刘传亮;张朝军;李付广*. 棉花体细胞胚胎发生的研究进展[J]. 植物学报, 2008, 25(04): 469-475. |
[7] | 熊丹;陈发菊;梁宏伟;王玉兵. 珍稀濒危植物香果树胚性细胞悬浮系的建立和植株再生[J]. 植物学报, 2008, 25(03): 337-343. |
[8] | 贾莉芳;*;王晓军;赵民安. 新疆雪莲体细胞胚胎发生[J]. 植物学报, 2008, 25(01): 85-88. |
[9] | 王瑛 周燕 高述民 梁蕊 刘艳 李莉 陈新德. 芨芨草愈伤组织器官发生及植株再生[J]. 植物学报, 2007, 24(05): 636-641. |
[10] | 关春梅 张宪省. 植物离体器官发生控制机理研究进展[J]. 植物学报, 2006, 23(5): 595-602. |
[11] | 贾彩风 李悦. 华山松胚性愈伤组织诱导与幼胚离体培养[J]. 植物学报, 2006, 23(2): 186-191. |
[12] | 江波 杨映根 郭奕明 郭仲琛 陈永喆. 松柏类植物体细胞胚胎发生的研究进展[J]. 植物学报, 2004, 21(04): 495-505. |
[13] | 徐晓峰 黄学林. TDZ:一种有效的植物生长调节剂[J]. 植物学报, 2003, 20(02): 227-237. |
[14] | 谷瑞升 蒋湘宁 郭仲琛. 植物离体培养中器官发生调控机制的研究进展[J]. 植物学报, 1999, 16(03): 238-244. |
[15] | 杨金铃 桂耀林 郭仲琛. 云杉属树种的体细胞胚胎发生[J]. 植物学报, 1999, 16(01): 59-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||