[1] McCormick S, NiedermeyerJ, Fry J, Barnason A, Horsch R, Fraley R(1986) Leaf disc transformation of cultivated tomato(L. esculentum) using Agrobacterium tumeficiens. Plant Cell Rep 5,81-84.[2] Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis.Plant Biotechnol J 3,259-273.[3] Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140,3-11.[4] Pozueta-Romero J, Houlné G, Ca?as L, Schantz R, Chamarro J (2001)Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cel lTiss Org Cult 67,173-180.[5] Park SH, Morris JL, Park JE, Hirschi KD, Smith RH(2003) Efficient and genotype-independent Agrobacterium– mediated tomato. J Plant Physiol 160,1253-1257[6]Velcheva M, Faltin Z, Flaishman M,Eshdat Y,Perl A.(2005) A liquid culture system for Agrobacterium-mediated transformation of tomato(Lycopersicon esculentum L. Mill). Plant Sci 168,121-130. [7]Frary A, Earle ED (1996) An examination of factors affecting the efficient of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16,235-240.[8]Sun HJ, Uchii S, Watanabe S, Ezura H(2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics.Plant Physiol 47,426-431.[9] De Amicis F, Patti T, Marchetti S(2007) Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif. Transgenic Res 16,731-738 [10] Kay R, Chan A, Daly M, McPherson J(1987) Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes.Science 236,1299-302.[11] Avramova Z, Sanmiguel P, Georgieva E, Bennetzen JL(1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell 7,1667-1680.[12] Fukuda Y (1999) Characterization of matrix attachment sites in the upstream region of a tobacco chitinase gene. Plant Mol Biol 39,1051-1062.[13] Hall G Jr, Allen GC, Loer DS, Thompson WF, Spiker S(1991) Nuclear scaffold and scaffold-attachment regions in higher plants. Proc Natl Acad Sci USA 88,9320-9324.[14] Xue H, Yang Y T, WuCA, Ya ng G.D, Zhang MM, Zheng CC(2005) TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor Appl Genet 110,620-627.[15] Zhang JD, Lu L, Ji LS, Yang GD, Zheng CC(2009) Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Res 18,377-85. |