黄梦莎, 孔令蝶, 于淼, 刘畅, 王思钦, 王若涵*
收稿日期:
2025-01-09
修回日期:
2025-03-27
出版日期:
2025-05-07
发布日期:
2025-05-07
通讯作者:
王若涵
基金资助:
Huang Mengsha, Kong Lingdie, Yu Miao, Liu Chang, Wang Siqin, Wang Ruohan*
Received:
2025-01-09
Revised:
2025-03-27
Online:
2025-05-07
Published:
2025-05-07
Contact:
Ruohan Wang
摘要: 三维重建技术(3D reconstruction)是指利用计算机图形学和图像处理技术, 从二维图像数据中提取目标物体的几何和拓扑信息, 构建其计算机可处理的三维数学模型, 从而实现物体的虚拟重建。在植物科学研究中, 三维模型的构建已成为研究植物生长发育、形态结构和功能机制的有效手段, 为多尺度成像、测量、分析提供了有力支撑, 并在农业和林业领域展现出巨大应用潜力。近年来, 随着植物三维重建技术不断完善, 它在植物学研究中衍生出不同的应用方向, 涵盖植物形态结构建模、生长发育动态监测以及植物育种等多方面。本文综述了三维重建技术的发展历程及其常见的三维重建成像技术在植物不同尺度(从器官、组织到细胞)研究中的应用, 重点阐述了这些技术的基本原理及应用, 旨在为植物多模态跨尺度成像及表型与功能研究提供理论和技术支撑, 为理解植物生长发育规律及响应环境变化的机制提供了新的途径。
黄梦莎, 孔令蝶, 于淼, 刘畅, 王思钦, 王若涵. 不同尺度三维重建技术在植物研究中的发展及应用. 植物学报, DOI: 10.11983/CBB25002.
Huang Mengsha, Kong Lingdie, Yu Miao, Liu Chang, Wang Siqin, Wang Ruohan. Development and Application of 3D Reconstruction Technology at Different Scales in Plant Research. Chinese Bulletin of Botany, DOI: 10.11983/CBB25002.
[1]Andrea G-F, Stefan d F(2019).A Simple Protocol for Imaging Floral Tissues of Arabidopsis with Confocal Microscopy.Methods Mol Biol, 1932:187-195.[2]Arshad M A, Jubery T, Afful J, Jignasu A, Balu A, Ganapathysubramanian B, Sarkar S, Krishnamurthy A(2024).Evaluating Neural Radiance Fields for 3D Plant Geometry Reconstruction in Field Conditions.Plant Phenomics, 0235.[3]Bernd Z, Stefan M, Günther Z(2022).Volumetric 3D reconstruction of plant leaf cells using SEM,ion milling,TEM,and serial sectioning.Planta, 255:118-118.[4]Besl P J, McKay N D(1992).A method for registration of 3-D shapes.IEEE Trans Pattern Anal Mach Intell, 14:239-256.[5]Bushby A J, P' ng K M Y, Young R D, Young R D, Pinali C, Knupp C, Quantock A J(2011).Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy.Nat Protoc, 6:845-858.[6]Cai JR, Liang XX, Xu Q, Xia ZY, Sun L, Ma LX(2024).X-ray three-dimensional reconstruction technology was used to detect the volumetric edibility of thick-skinned citrus.Transactions of the CSAE, 40:293-300.[7]蔡健荣, 梁小祥, 许骞, 夏中岩, 孙力, 马立鑫(2024).采用射线三维重构技术检测厚皮柑橘的体积可食率.农业工程学报, 40:293-300.[8]Chen XJ(2015).Research on computer vision technology based on OpenCV.Computer Knowledge and Technology, 11:137-141.[9]陈雪娇(2015).基于的计算机视觉技术研究.电脑知识与技术,11(30):137-141.[10]Collevatti R G, Casta?eda M, Caminha S A F S, Jaramillo C(2024).Application of confocal laser microscopy for identification of modern and fossil pollen grains,an example in palm Mauritiinae.Rev Palaeobot Palynol, 327:105140-105140.[11]Cooley J W, Tukey J W(1965).An algorithm for the machine calculation of complex Fourier series.Math Comput, 19:297-301.[12]Crumpton-Taylor M, Grandison S, Png K M Y, Bushby A J, Smith A M(2012).Control of starch granule numbers in Arabidopsis chloroplasts.Plant Physiol, 158:905-916.[13]Cui Y, Cao W, He Y, Zhao Q, Wakazaki M, Zhuang XH, Gao JY, Zeng YL, Gao CJ, Ding Y, Wong HY, Wong WS, Lam H K, Wang PF, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang LW(2019).A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells.Nat Plants, 5:95-105.[14]Davies H E, Wathen C G, Gleeson F V(2011).The risks of radiation exposure related to diagnostic imaging and how to minimise them.BMJ, 342:947-947.[15]Guo JS, Wang G, Xie L, Wang XQ, Feng LC, Guo WB, Tao XR, Humbel B M, Zhang ZK, Hong J ( 2022).Three-Dimensional Analysis of Membrane Structures Associated with Tomato Spotted Wilt Virus Infection. Plant Cell Environ 46(2).[17]Herppich W B, Matsushima U, Graf W, Zabler S, Dawson M, Choinka G, Manke I(2015).Synchrotron X-ray CT of rose peduncles - evaluation of tissue damage by radiation.Mater Test, 57:59-63.[18]Herremans E, Melado-Herreros A, Defraeye T, Verlinden Bert, Hertog M, Verboven P, Val J, Fernández-Valle M E, Bongaers E, Estrade P, Wevers M, Barreiro P, Nicola? B M(2014).Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars.Postharvest Biol Technol, 87:42-50.[19]Herremans E, Verboven P, Verlinden B E, Cantre D, Abera M, Wevers M, Nicola? B M(2015).Automatic analysis of the 3-D microstructure of fruit parenchyma tissue using X-ray micro-CT explains differences in aeration.BMC Plant Biol, 264.[20]Heymann J A W, Hayles M, Gestmann I, Giannuzzi L A, Lich B, Subramaniam S(2006).Site-specific 3D imaging of cells and tissues with a dual beam microscope.J Struct Biol, 155:63-73.[21]House A, Balkwill K(2013).FIB-SEM: An Additional Technique for Investigating Internal Structure of Pollen Walls.Microsc Microanal, 19:1535-1541.[22]Hu ZJ, Liu JZ, Shen SY, Wu WQ, Yuan JB, Shen WW, Ma LY, Wang GC, Yang SY, Xu XP, Cui YN, Li ZC, Shen LJ, Li LL, Bian JH, Zhang X, Han H, Lin JX(2024).Large-volume fully automated cell reconstruction generates a cell atlas of plant tissues.Plant Cell.[23]Jackson M D B, Xu H, Duran-Nebreda S, Stamm P, Bassel G W(2017).Topological analysis of multicellular complexity in the plant hypocotyl.ELife, 6.[24]Janes G, Daniel v W, Cowling S, Kerr I, Band L, French A P, Bishopp A(2018).Cellular Patterning of Arabidopsis Roots Under Low Phosphate Conditions.Front Plant Sci, 735.[25]Janssen S, Verboven P, Nugraha B, Boone M, Josipovic I, Nicola? B M(2020).D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-CT.Postharvest Biol Tec, 159:111014-111014.[26]Jin D, Zhou RJ, Yaqoob Z, So P T C(2017).Tomographic phase microscopy: principles and applications in bioimaging [Invited].J Opt Soc Am B, 34:64-77.[27]Kim G, Lee S, Shin S, Park Y(2018).Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography.Sci Rep-UK, 8:-.[28]Kim K, Chung J M, Lee S, Jung H S(2015).The Effects of Electron Beam Exposure Time on Transmission Electron Microscopy Imaging of Negatively Stained Biological Samples.Appl Microsc, 45:150-154.[29]Leo S, Sovanna T, Sarah R, Langdale J A(2022).Flip-Flap: A Simple Dual-View Imaging Method for 3D Reconstruction of Thick Plant Samples.Plants, 11:506-506.[30]李成辉, 田云飞, 闫曙光(2020).激光扫描共聚焦显微成像技术与应用.实验科学与技术, (04):33-38.[31]李亮, 陈志强, 张丽, 邢宇翔(2006).潘晓川教授的反投影滤波新型重建算法介绍.理论与应用研究, (03):68-73.[32]李青, 李润睿, 强彦, 成煜斌, 王涛(2023).人工智能在医学图像重建中的研究进展.太原理工大学学报, 54:1-16.[33]Li XX, Ji G, Chen X, Ding W, Sun L, Xu W, Han H, Sun F(2017).Large scale three-dimensional reconstruction of an entire Caenorhabditis elegans larva using AutoCUTS-SEM.J Struct Biol, 200:87-96.[34]李叶, 黄华平, 林培群, 崔艳梅, 李勤奋, 郑勇奇(2015).激光扫描共聚焦显微镜的基本原理及其使用技巧.电子显微学报, :169-176.[35]Looverbosch T V D, Bhuiyan M H R, Verboven P, Dierick M, Loo D V, Beenbouwer J D, Sijbers J, Nicola? B(2020).Nondestructive internal quality inspection of pear fruit by X-ray CT using machine learning.Food Control, 113:107170-107170.[36]路姣, 孟国龙, 余凌竹(2023).超高分辨率激光扫描共聚焦显微镜的成像技术与应用.实验科学与技术, 25-29.[37]Luo LY, Jiang XT, Yang Y, Samy E R A, Lefsrud M, HoyosV V, Sun SP(2023).Eff-3DPSeg: 3D Organ-Level Plant Shoot Segmentation Using Annotation-Efficient Deep Learning.Plant phenomics, 5:0080-0080.[38]马灵玉(2021).银杏种胚和拟南芥种子多尺度三维重构研究.博士论文.北京北京林业大学1-101.[39]Ma LY, Hu ZJ, Shen WW, Zhang YY, Wang GC, Chang B, Lu JK, Cui YN, Xu HM, Feng Y, Jin B, Zhang X, Wang L, Lin JX(2024).D reconstruction and multi-omics analysis reveal a unique pattern of embryogenesis in Ginkgo biloba.Plant, Physiol.[40]马灵玉, 祁晓红, 胡子建, 沈微微, 王广超, 张柏林, 张曦, 林金星(2022).光学透明技术在植物多尺度成像中的应用.植物学报, 98-110..,:-.[41]Maizel A, Daniel v W, Federici F, Haseloff J, Stelzer E H K(2011).High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy.Plant J, 68(2):377-385.[42]Masters B R, Gonzalez R C, Woods R(2009).Book Review: Digital Image Processing,Third Edition.J Biomed Opt, 029901..,:-.[43]Masyutin A G, Tarasova E K, Onishchenko G E, Erokhina M V(2023).Identifying Carbon Nanoparticles in Biological Samples by Means of Transmission Electron Microscopy.Bull Russ Acad Sci Phys, 87(10):1443-1448.[44]Mathilde H, Christine A, Daniel W, PierreEmmanuel C(2022).Imaging plant tissues: advances and promising clearing practices.Trends Plant Sci, 27(6):601-615.[45]Montenegro-Johnson T D, Stamm P, Strauss S, Topham A T, Tsagris M, Wood A T A, Smith R S, Bassel G W(2015).Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas.Plant Cell, 27(4):1018-1033.[46]Morisset J-B, Mothe F, Colin F(2012).Observation of Quercus petraea epicormics with X-ray CT reveals strong pith-to-bark correlations: Silvicultural and ecological implications.Forest Ecol Manag, 278:127-137.[47]Nugraha B, Verboven P, Janssen S, Wang Z, Nicola? B M(2019).Non-destructive porosity mapping of fruit and vegetables using X-ray CT.Postharvest Biol Tech, 150:80-88.[48]Ove?ka M, Ji?í S, Michaela T, George K, Jasim B, Cintia M, ?amajová O, Kuběnová L, ?amaj J(2022).Imaging plant cells and organs with light-sheet and super-resolution microscopy.Plant Physiol, 188(2):683-702.[49]祁晓红(2022).榆树种子发育后期多尺度三维重构及代谢和转录组分析研究.博士论文. 北京: 北京林业大学. 1-123.[50]Qi XH, Chen LL, Hu ZJ, Shen WW, Xu HM, Ma LY, Wang GC, Jing YP, Wang XD, Zhang BL, Lin JX(2022).Cytology,transcriptomics,and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds.J Plant Physiol, 271:153639-153639.[51]Roberts L G (2022).Machine Perception of Three-Dimensional Solids.[52]沈若涵(2021).透射电子显微镜中的三维重构新方法.博士论文. 长沙: 湖南大学.1-124.[53]施般若, 黄小萍, 付秀荣, 王邦俊(2022).植物多细胞网络分析研究进展.生物工程学报, 38:2798-2810.[54]Silveira S R, Le G C, GómezFelipe A, RoutierKierzkowska A, Kierzkowski D(2021).Live-imaging provides an atlas of cellular growth dynamics in the stamen.Plant physiol, 188(2):769-781.[55]Stevens K(2014).The Vision of David Marr.Perception, 41:1061-1072.[56]Takashi I, Shin Y, Hideo Y, Takeo I(2014).Flower modeling via X-ray computed tomography.ACM Trans Graphics, 33(4):1-10.[57]Tian G, Feiyu Z, Puneet P, Jaspreet Sandhu, Akrofi D H, Sun JX, Yu Pan, Paul S, Harkamal W, Yu HF (2021).Novel 3D Imaging Systems for High-Throughput Phenotyping of Plants. Remote Sens-Basel 13(11) 2113-2113.[58]Tracy S R, Gomez J F, Sturrock C J, Wilson Z A, Ferguson A C(2017).Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (μCT).Plant Methods, 13.[59]Trueba S, Theroux-Rancourt G, Earles J M, Buckley T N, Love D, Johnson D M, Brodersen C(2022).The three-dimensional construction of leaves is coordinated with water use efficiency in conifers.New Phytol, 233(2):851-861.[60]Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui J C(2008).High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis.Plant Cell, 20(6):1494-1503.[61]王静, 王杰, 郭娟, 冯韵, 李喜霞, 张建国, 姜笑梅, 殷亚方, 李姗(2022).基于聚焦离子束-扫描电子显微技术的雪松木质部具缘纹孔三维重构.电子显微学报, 66-71.[62]Wang Q, Huang YG, Ren Z J, Zhang XX, Ren J, Su JQ, Zhang C, Tian J, Yu YJ, Gao G F, Li LG, Kong Z S(2020).Transfer cells mediate nitrate uptake to control root nodule symbiosis.Nat Plants, 6(7):800-808.[63]Wei D, Jacobs S, Modla S, Zhang S, Young C L, Cirino R, Caplan J, Czymmek K(2012).High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy.BioTechniques, 53(1):41-48.[64]Wen WL, Wang JL, Zhao YX, Wang CY, Liu K, Chen B, Wang YQ, Duan MX, Guo XY(2024).D Morphological Feature Quantification and Analysis of Corn Leaves.Plant Phenomics, 0225.[65]吴迪(2019).基于-的水稻茎部性状无损提取关键技术研究.博士论文. 武汉: 华中农业大学. 1-128.[66]Xiao Z, StaitGardner T, Willis S A, Price W S, Moroni F J, Pagay V, Tyerman S D, Schmidtke L M, Rogiers S Y(2021).D visualisation of voids in grapevine flowers and berries using X‐ray micro computed tomography.Aust J Grape Wine Res, 27(2):141-148.[67]Yamakawa S, Kato Y, Taniguchi M, Oi T(2023).Intracellular positioning of mesophyll chloroplasts following to aggregative movement in Setaria viridis analysed three-dimensionally with a confocal laser scanning microscope.Flora, 306.[68]张凯, 张艳, 胡仲军, 季刚, 孙飞(2010).电子显微三维重构技术发展与前沿.生物物理学报, 26:533-559.[69]Zhang X, Man Y, Zhuang XH, Shen J B, Zhang Y, Cui Y N, Yu M, Xing JJ, Wang GC, Lian N, Hu Z J, Ma L Y, Shen WW, Yang SY, Xu HM, Bian JH, Jing YP, Li XJ, Li RL, Mao TL, Jiao YL, Sodmergen, Ren HY, Lin JX(2021).Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques.Sci China Life Sci, 64(09):1392-1422.[70]Zhu YY(2023).D Reconstruction of Ancient Building Structure Scene Based on Computer Image Recognition.Int J Inf Technol Sy, 16(3).[71]Zi W, Pieter V, Bart N(2017).Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques.Plant Methods,105. |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 张竟文 李晶 王汝苗 王贺年 崔丽娟. 不同纬度滨海湿地植物根与土壤生态化学计量特征及其内稳态分析[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[3] | 陈刚刚 朱思洁 郭亮娜 付芳伟 刘昱灼 李江荣. 藏东南色季拉山高山树线乔灌地上-地下养分分配策略[J]. 植物生态学报, 2025, 49(化学计量与功能性状): 0-0. |
[4] | 赵常明 熊高明 申国珍 葛结林 徐文婷 徐凯 武元帅 谢宗强. 神农架常绿落叶阔叶混交林和亚高山针叶林植物群落特征数据集[J]. 植物生态学报, 2025, 49(典型生态系统数据集): 0-0. |
[5] | 贾紫璇 方涛 张舒欣 刘一凡 赵微 王荣 昌海超 郭允倩 朱耀军 罗芳丽 于飞海. 不同沼泽湿地芦苇地上-地下性状对水分变化的响应[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 0-0. |
[6] | 刘影 李疆枫 吴佳琪 王艺帆 尹清琳 王静. 干旱下草地植物糙隐子草根系和菌根真菌对土壤碳氮的影响[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 0-0. |
[7] | 郭志红 杨妮 张涛 李海波 田太安 黄小波 李聪 马驷驹 苏建荣 李帅锋. 梵净山天然林菌根植物功能多样性与群落构建沿海拔梯度的变化[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 0-0. |
[8] | 赵珮杉 高广磊 丁国栋 张英. 林龄和生态位对樟子松人工林地下真菌群落构建的影响[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 1-0. |
[9] | 常鹏飞 李平 纳尔斯格 王静 王振华 杨森 贾舟 杨璐 刘玲莉 邓美凤. 内蒙古温带草原不同草地类型土壤有机碳和无机碳储量对总碳储量的贡献及其影响因素[J]. 植物生态学报, 2025, 49(地上地下生态过程关联): 0-0. |
[10] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性-生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[11] | 杜英杰 范爱连 王雪 闫晓俊 陈廷廷 贾林巧 姜琦 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(4): 1-0. |
[12] | 欧阳子龙 贾湘璐 石景忠 滕维超 刘秀. 生长调节剂对低温胁迫及复温下红海榄幼苗光合特性的影响[J]. 植物生态学报, 2025, 49(4): 1-0. |
[13] | 乔沛阳 顾肖璇 刘昌鑫 曹泽宇 张婷婷 林晨 陈钦常 彭修凡 陈菲菲 李华亮 陈伟 陈鹭真. 超强台风“摩羯”登陆点东寨港红树林受损状况研究[J]. 植物生态学报, 2025, 49(4): 1-0. |
[14] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(4): 1-0. |
[15] | 蒋晓玉 于欣淼 廖琴 张金伟 吴雪峰 王旭 潘俊彤 王俊锋 穆春生 石玉杰. 陆地植物排放氧化亚氮的研究进展[J]. 植物生态学报, 2025, 49(4): 1-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||