植物学报 ›› 2022, Vol. 57 ›› Issue (5): 661-672.DOI: 10.11983/CBB22041
郝雪峰1,2, 毋张晶2, 马甜2, 金竹萍2,*(), 裴雁曦2,*(
)
收稿日期:
2022-03-07
接受日期:
2022-05-10
出版日期:
2022-09-01
发布日期:
2022-09-09
通讯作者:
金竹萍,裴雁曦
作者简介:
peiyanxi@sxu.edu.cn基金资助:
Hao Xuefeng1,2, Wu Zhangjing2, Ma Tian2, Jin Zhuping2,*(), Pei Yanxi2,*(
)
Received:
2022-03-07
Accepted:
2022-05-10
Online:
2022-09-01
Published:
2022-09-09
Contact:
Jin Zhuping,Pei Yanxi
About author:
peiyanxi@sxu.edu.cn摘要:
选择性剪接是基因转录后的mRNA通过不同的剪接方式产生多样性成熟转录本的过程, 是真核生物细胞中一种重要的转录后调控方式。植物基因也常通过这种断舍离合的方式产生一专多能的转录本, 达到调节多种生命活动的目的。相较于动物, 植物中该领域的研究起步较晚, 但近年来也取得了长足的进步。该文综述了植物基因选择性剪接的生物学意义、剪接方式和机制、研究方法以及在生长发育与环境胁迫适应性调节中的作用, 并展望了未来的研究方向。
郝雪峰, 毋张晶, 马甜, 金竹萍, 裴雁曦. 植物基因选择性剪接: 断舍离合, 达权知变. 植物学报, 2022, 57(5): 661-672.
Hao Xuefeng, Wu Zhangjing, Ma Tian, Jin Zhuping, Pei Yanxi. Alternative Splicing of Plant Genes: Full of Change, Sail with Wind. Chinese Bulletin of Botany, 2022, 57(5): 661-672.
图1 前体mRNA组成型剪接过程(改自Laloum et al., 2018) SR: 富含丝氨酸和精氨酸的蛋白; hnRNP: 核不均一核糖核蛋白; snRNA: 核小RNA; snRNP: 小核核糖核蛋白; SAP: 剪接体相关蛋白; G-U-A(Y)nAG: 内含子5?端剪接识别位点-分支位点-3?端剪接识别位点
Figure 1 Constitutive splicing process of precursor mRNA (modified from Laloum et al., 2018) SR: Serine/arginine-rich protein; hnRNP: Heterogeneous nuclear ribonucleoprotein; snRNA: Small nuclear RNA; snRNP: Small nuclear ribonucleoprotein; SAP: Spliceosome-associat- ed proteins; G-U-A(Y)nAG: Intron 5? end splice recognition site-branching site-3? end splice recognition site
图2 基因选择性剪接的模式 不同颜色的方框表示不同外显子; 方框之间的黑色直线表示内含子; 红色折线表示内含子剪接部位; 黑色箭头表示启动子控制的转录起始位点。
Figure 2 Patterns of gene alternative splicing The different colored boxes depict different exons; the black lines between the boxes represent introns; the red polylines mark the point of splicing; the black bent arrows indicate the transcriptional starting sites driven by the promoter.
[1] | 蔡芳芳, 邵长生, 孙玉强 (2022). 可变剪切在植物成花转换中的作用. 植物学报 57, 69-79. |
[2] | Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vázquez J, Valencia A, Tress ML (2015). Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level. PLoS Comput Biol 11, e1004325. |
[3] | Barta A, Marquez Y, Brown JWS (2012). Challenges in plant alternative splicing. In: Stamm S, Smith CWJ, Lührmann R, eds. Alternative Pre-mRNA Splicing: Theory and Protocols. Weinheim: Wiley-VCH Verlag. pp. 79-89. |
[4] | Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM (1986). The expression of a nopaline synthase-human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6, 347-357. |
[5] | Blencowe BJ (2006). Alternative splicing: new insights from global analyses. Cell 126, 37-47. |
[6] | Carvalho RF, Carvalho SD, Duque P (2010). The plant- specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154, 772-783. |
[7] | Carvalho RF, Szakonyi D, Simpson CG, Barbosa ICR, Brown JWS, Baena-González E, Duque P (2016). The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant Cell 28, 1910-1925. |
[8] | Carvalho SD, Saraiva R, Maia TM, Abreu IA, Duque P (2012). XBAT35, a novel Arabidopsis RING E3 ligase exhibiting dual targeting of its splice isoforms, is involved in ethylene-mediated regulation of apical hook curvature. Mol Plant 5, 1295-1309. |
[9] | Chamala S, Feng GQ, Chavarro C, Barbazuk WB (2015). Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Frontiers Bioeng Biotech 3, 33. |
[10] | Chaudhary S, Jabre I, Reddy ASN, Staiger D, Syed NH (2019). Perspective on alternative splicing and proteome complexity in plants. Trends Plant Sci 24, 496-506. |
[11] | Chen T, Cui P, Chen H, Ali S, Zhang SD, Xiong LM (2013). A KH-domain RNA-binding protein interacts with FIERY2/ CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet 9, e1003875. |
[12] | Chen WJ, Moore MJ (2015). Spliceosomes. Curr Biol 25, R181-R183. |
[13] | Daszkowska-Golec A, Skubacz A, Marzec M, Slota M, Kurowska M, Gajecka M, Gajewska P, Płociniczak T, Sitko K, Pacak A, Szweykowska-Kulinska Z, Szarejko I (2017). Mutation in HvCBP20 (cap binding protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels. Front Plant Sci 8, 942. |
[14] | Day IS, Golovkin M, Palusa SG, Link A, Ali GS, Thomas J, Richardson DN, Reddy ASN (2012). Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing. Plant J 71, 936-947. |
[15] | de la Fuente van Bentem S, Vossen JH, Vermeer JEM, de Vroomen MJ, Gadella TWJ Jr, Haring MA, Cornelissen BJC (2003). The subcellular localization of plant protein phosphatase 5 isoforms is determined by alternative splicing. Plant Physiol 133, 702-712. |
[16] | Deng X, Gu LF, Liu CY, Lu TC, Lu FL, Lu ZK, Cui P, Pei YX, Wang BC, Hu SN, Cao XF (2010). Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci USA 107, 19114-19119. |
[17] | Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M (2021). Insights into the role of alternative splicing in plant temperature response. J Exp Bot 72, 7384-7403. |
[18] | Duque P (2011). A role for SR proteins in plant stress responses. Plant Signal Behav 6, 49-54. |
[19] | Early P, Rogers J, Davisa M, Calame K, Bond M, Wall R, Hood L (1980). Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell 20, 313-319. |
[20] | Eckardt NA (2013). The plant cell reviews alternative splicing. Plant Cell 25, 3639. |
[21] | Emami S, Arumainayagam D, Korf I, Rose AB (2013). The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana. Plant Biotechnol J 11, 555-563. |
[22] | Fouquet R, Martin F, Fajardo DS, Gault CM, Gómez E, Tseung CW, Policht T, Hueros G, Settles AM (2011). Maize rough endosperm3 encodes an RNA splicing factor required for endosperm cell differentiation and has a nonautonomous effect on embryo development. Plant Cell 23, 4280-4297. |
[23] | Hasegawa M, Miura T, Kuzuya K, Inoue A, Won Ki S, Horinouchi S, Yoshida T, Kunoh T, Koseki K, Mino K, Sasaki R, Yoshida M, Mizukami T (2011). Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem Biol 6, 229-233. |
[24] | Heinrich B, Zhang ZY, Raitskin O, Hiller M, Benderska N, Hartmann AM, Bracco L, Elliott D, Ben-Ari S, Soreq H, Sperling J, Sperling R, Stamm S (2009). Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J Biol Chem 284, 14303-14315. |
[25] | Huang CF, Miki D, Tang K, Zhou HR, Zheng ZM, Chen W, Ma ZY, Yang L, Zhang H, Liu RY, He XJ, Zhu JK (2013). A pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet 9, e100-3779. |
[26] | Hugouvieux V, Kwak JM, Schroeder JI (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477-487. |
[27] | Iida K, Shionyu M, Suso Y (2008). Alternative splicing at NAGNAG acceptor sites shares common properties in land plants and mammals. Mol Biol Evol 25, 709-718. |
[28] | Izaurralde E, Lewis J, Mcguigan C, Jankowska M, Darzynkiewicz E, Mattaj IW (1994). A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657-668. |
[29] | Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS (2012). Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40, 2454-2469. |
[30] | Kim YO, Pan SO, Jung CH, Kang H (2007). A zinc finger-containing glycine-rich RNA binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol 48, 1170-1181. |
[31] | Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z (2012). The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci 3, 9. |
[32] | Kondo T, Plaza S, Zanet J, Benrabah E, Valenti P, Hashimoto Y, Kobayashi S, Payre F, Kageyama Y (2010). Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science 329, 336-339. |
[33] | Kong XX, Ma L, Yang LM, Chen Q, Xiang N, Yang YP, Hu XY (2014). Quantitative proteomics analysis reveals that the nuclear cap-binding complex proteins Arabidopsis CBP20 and CBP80 modulate the salt stress response. J Proteome Res 13, 2495-2510. |
[34] | Laloum T, Martín G, Duque P (2018). Alternative splicing control of abiotic stress responses. Trends Plant Sci 23, 140-150. |
[35] | Lazar G, Goodman HM (2000). The Arabidopsis splicing factor SR1 is regulated by alternative splicing. Plant Mol Biol 42, 571-581. |
[36] | Lee BH, Kapoor A, Zhu JH, Zhu JK (2006). STABILIZED1, a stress-upregulated nuclear protein, is required for pre- mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18, 1736-1749. |
[37] | Lin JY, Zhu ZQ (2021). Plant responses to high temperature: a view from pre-mRNA alternative splicing. Plant Mol Biol 105, 575-583. |
[38] | Ling Y, Alshareef S, Butt H, Lozano-Juste J, Li LX, Galal AA, Moustafa A, Momin AA, Tashkandi M, Richardson DN, Fujii H, Arold S, Rodriguez PL, Duque P, Mahfouz MM (2017). Pre-mRNA splicing repression triggers abiotic stress signaling in plants. Plant J 89, 291-309. |
[39] | Ling Y, Serrano N, Gao G, Atia M, Mokhtar M, Woo YH, Bazin J, Veluchamy A, Benhamed M, Crespi M, Gehring C, Reddy ASN, Mahfouz MM (2018). Thermopriming triggers splicing memory in Arabidopsis. J Exp Bot 69, 2659-2675. |
[40] | Lopato S, Mayeda A, Krainer AR, Barta A (1996). Pre- mRNA splicing in plants: characterization of Ser/Arg splicing factors. Proc Natl Acad Sci USA 93, 3074-3079. |
[41] | Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012). Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22, 1184-1195. |
[42] | Mei WB, Boatwright L, Feng GQ, Schnable JC, Barbazuk WB (2017a). Evolutionarily conserved alternative splicing across monocots. Genetics 207, 465-480. |
[43] | Mei WB, Liu SZ, Schnable JC, Yeh CT, Springer NM, Schnable PS, Barbazuk WB (2017b). A comprehensive analysis of alternative splicing in paleopolyploid maize. Front Plant Sci 8, 694. |
[44] | Merkin J, Russell C, Chen P, Burge CB (2012). Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593-1599. |
[45] | Mulligan GJ, Guo W, Wormsley S, Helfman DM (1992). Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of beta-tropomyosin pre-mRNA. J Biol Chem 267, 25480-25487. |
[46] | Nieto Moreno N, Giono LE, Cambindo Botto AE, Muñoz MJ, Kornblihtt AR (2015). Chromatin, DNA structure and alternative splicing. FEBS Lett 589, 3370-3378. |
[47] | Nilsen TW, Graveley BR (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457-463. |
[48] | Pajoro A, Severing E, Angenent GC, Immink RGH (2017). Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol 18, 102. |
[49] | Palusa SG, Ali GS, Reddy ASN (2007). Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J 49, 1091-1107. |
[50] | Pan Q, Bakowski MA, Morris Q, Zhang W, Frey BJ, Hughes TR, Blencowe BJ (2005). Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet 21, 73-77. |
[51] | Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. |
[52] | Pei YX, Chen ZJ, Cao JS, Chen XJ, Liu XH (2004). Cytoplasmic male sterility of tuber mustard is associated with the alternative spliced mitochondrial T gene transcripts. Chin Sci Bull 49, 2481-2486. |
[53] | Pei YX, Qiao ZJ, Chen XJ, Chen ZJ, Cao JS, Yu X, Ma LH, Liu XH (2008). T1243, an alternative transcript of the mitochondrial T gene in Brassica juncea var. tumida, causes pollen abortion in Arabidopsis thaliana. Plant Sci 175, 793-798. |
[54] | Pelechano V, Wei W, Steinmetz LM (2013). Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497, 127-131. |
[55] | Perea-Resa C, Hernández-Verdeja T, López-Cobollo R, del Mar Castellano M, Salinas J (2012). LSM proteins provide accurate splicing and decay of selected transcripts to ensure normal Arabidopsis development. Plant Cell 24, 4930-4947. |
[56] | Punzo P, Grillo S, Batelli G (2020). Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 48, 2117-2126. |
[57] | Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A (2010). Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 38, 265-278. |
[58] | Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010). ABA perception and signaling. Trends Plant Sci 15, 395-401. |
[59] | Reddy ASN, Marquez Y, Kalyna M, Barta A (2013). Complexity of the alternative splicing landscape in plants. Plant Cell 25, 3657-3683. |
[60] | Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R, Rodriguez PL, Baena- González E (2013). ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase 1 signaling in Arabidopsis. Plant Cell 25, 3871-3884. |
[61] | Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684. |
[62] | Singer GA, Wu JJ, Yan P, Plass C, Huang TH, Davuluri RV (2008). Genome-wide analysis of alternative promoters of human genes using a custom promoter tiling array. BMC Genomics 9, 349. |
[63] | Song QA, Catlin NS, Brad Barbazuk W, Li S (2019). Computational analysis of alternative splicing in plant genomes. Gene 685, 186-195. |
[64] | Srikar C, Feng G, Carolina C, Brad BW (2015). Genome- wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotech 3, 33. |
[65] | Staudt AC, Wenkel S (2011). Regulation of protein function by ‘microProteins’. EMBO Rep 12, 35-42. |
[66] | Swiezewski S, Liu F, Magusin A, Dean C (2009). Cold- induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462, 799-802. |
[67] | Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S (2007). Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol 48, 1036-1049. |
[68] | Tharun S (2009). Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int Rev Cell Mol Biol 272, 149-189. |
[69] | Wachter A, Rühl C, Stauffer E (2012). The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation. Front Plant Sci 3, 81. |
[70] | Wan RX, Bai R, Yan CY, Lei JL, Shi YG (2019). Structures of the catalytically activated yeast spliceosome reveal the mechanism of branching. Cell 177, 339-351. |
[71] | Wang BB, Brendel V (2004). The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5, R102. |
[72] | Wang PC, Xue L, Batelli G, Lee S, Hou YJ, Van Oosten MJ, Zhang HM, Tao WA, Zhu JK (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA 110, 11205-11210. |
[73] | Wang YY, Xiong F, Ren QP, Wang XL (2020). Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. J Exp Bot 71, 751-758. |
[74] | Wang ZJ, Ji HT, Yuan BJ, Wang SF, Su C, Yao B, Zhao HT, Li X (2015). ABA signaling is fine-tuned by antagonistic HAB1 variants. Nat Commun 6, 8138. |
[75] | Werneke JM, Chatfield JM, Ogren WL (1989). Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1, 815-825. |
[76] | Wu XH, Liu M, Downie B, Liang C, Ji GL, Li QQ, Hunt AG (2011). Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci USA 108, 12533-12538. |
[77] | Xing DH, Wang YJ, Hamilton M, Ben-Hur A, Reddy ASN (2015). Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27, 3294-3308. |
[78] | Xiong F, Ren JJ, Yu Q, Wang YY, Lu CC, Kong LJ, Otegui MS, Wang XL (2019). AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5and FLC in Arabidopsis. New Phytol 223, 277-292. |
[79] | Xiong LM, Gong ZZ, Rock CD, Subramanian S, Guo Y, Xu WY, Galbraith D, Zhu JK (2001). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1, 771-781. |
[80] | Yang XZ, Zhang HY, Li L (2012). Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis. Plant J 70, 421-431. |
[81] | Yu HP, Tian CH, Yu Y, Jiao YL (2016). Transcriptome survey of the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana. Mol Plant 9, 749-752. |
[82] | Zhang GJ, Guo GW, Hu XD, Zhang Y, Li QY, Li RQ, Zhuang RH, Lu ZK, He ZQ, Fang XD, Chen L, Tian W, Tao Y, Kristiansen K, Zhang XQ, Li SG, Yang HM, Wang J, Wang J (2010). Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20, 646-654. |
[83] | Zhang RX, Calixto CPG, Marquez Y, Venhuizen P, Tzioutziou NA, Guo WB, Spensley M, Entizne JC, Lewandowska D, Ten Have S, Frei Dit Frey N, Hirt H, James AB, Nimmo HG, Barta A, Kalyna M, Brown JWS (2017). A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res 45, 5061-5073. |
[84] | Zhang WT, Du BJ, Liu D, Qi XT (2014). Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene. Biochem Biophys Res Commun 455, 312-317. |
[85] | Zhang ZL, Zhang SP, Zhang Y, Wang X, Li D, Li QL, Yue MH, Li Q, Zhang YE, Xu YY, Xue YB, Chong K, Bao SL (2011). Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23, 396-411. |
[1] | 王文伟 韩伟鹏 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位梯度的短期响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[4] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[5] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[6] | 张琦. 关于规范涉及喜马拉雅山地区物种中文命名的建议[J]. 生物多样性, 2023, 31(1): 0-0. |
[7] | 武晶, 汤沙, 王红霞, 常金华, 刘长友, 张凯旋, 刘永辉, 王彦楠, 韩渊怀, 刁现民. 我国杂粮种质资源创新研究:现状与展望[J]. 植物学报, 2023, 58(1): 0-0. |
[8] | 李晓明, 王兰芬, 唐永生, 常玉洁, 张菊香, 王述民, 武晶. 普通菜豆抗菜豆象性状的全基因组关联分析[J]. 植物学报, 2023, 58(1): 0-0. |
[9] | 王菲菲, 周振祥, 洪益, 谷洋洋, 吕超, 郭宝健, 朱娟, 许如根. 大麦NF-YC基因家族鉴定及盐胁迫的表达分析[J]. 植物学报, 2023, 58(1): 0-0. |
[10] | 许再富. 对国家植物园体系建设“统筹原则”的一些见解[J]. 生物多样性, 2023, 31(1): 0-0. |
[11] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[12] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[13] | 刘珂, 韩思成, 遇赫, 罗述金. 荒漠猫的演化遗传、分类和保护研究进展[J]. 生物多样性, 2022, 30(9): 22396-. |
[14] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[15] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||