植物学报 ›› 2022, Vol. 57 ›› Issue (3): 388-398.DOI: 10.11983/CBB21203
• 专题论坛 • 上一篇
收稿日期:
2021-11-23
接受日期:
2022-03-18
出版日期:
2022-05-01
发布日期:
2022-05-18
通讯作者:
李芳兰
作者简介:
* E-mail: lifl@cib.ac.cn基金资助:
Yiling Wu1,2, Fanglan Li1,*(), Hui Hu1,2
Received:
2021-11-23
Accepted:
2022-03-18
Online:
2022-05-01
Published:
2022-05-18
Contact:
Fanglan Li
摘要: 叶脉由贯穿于叶肉内部的维管组织及其外围机械组织构成, 多样化的脉序及网络结构使叶脉系统发生变异和功能分化。该文综述了叶脉系统结构与功能的最新研究进展。通过聚焦叶脉分级系统的结构与功能及其在叶片经济谱(LES)中的重要性, 解释叶脉性状与其它叶片功能性状之间的关系及机制。不同等级叶脉在机械支撑与水分运输方面存在功能分化, 其中1-3级粗脉在维持叶片形状和叶表面积以及物理支撑方面发挥重要作用, 有利于维持叶片最大受光面积; 4级及以上细脉具有水分调节功能, 它们与气孔相互协调, 影响叶片水分运输、蒸腾散热和光合作用速率。叶片生长过程与叶脉发育的动态变化模式决定叶脉密度, 并影响叶脉密度与叶片大小之间的关系: 叶面积与粗脉密度呈显著负相关, 与粗脉直径呈显著正相关, 而与细脉密度无关。与叶脉性状相关的叶片经济谱框架模型预测, 叶脉密度较高的叶片寿命短、比叶重较小, 叶片最大碳同化速率、代谢速率以及资源获取策略潜力较高。
吴一苓, 李芳兰, 胡慧. 叶脉结构与功能及其对叶片经济谱的影响. 植物学报, 2022, 57(3): 388-398.
Yiling Wu, Fanglan Li, Hui Hu. The Structure and Function of Leaf Veins and Their Influence on Leaf Economic Spectrum. Chinese Bulletin of Botany, 2022, 57(3): 388-398.
粗脉 | 细脉 | |
---|---|---|
叶脉分级 | 1-3级 | 4级及以上 |
结构特征 | 结构复杂; 含有较多的厚壁组织、厚角组织或纤维细胞, 具有较高的机械阻力和弹性; 含有1个或多个维管束, 木质部和韧皮部间常具有形成层; 易发生木质部栓塞 | 结构简单; 缺少维管束周围的坚固厚壁组织; 一般不具有形成层; 不易发生木质部栓塞 |
主要功能 | 长距离水分运输; 机械支持, 维持叶形; 抵抗生物损害及非生物干扰 | 短距离水分运输; 与气孔协作限制水分蒸发, 从而影响蒸腾作用和光合作用; 形成闭环, 为水分运输提供备选路径 |
表1 植物不同等级叶脉的结构与功能
Table 1 Structure and function of different vein orders in plants
粗脉 | 细脉 | |
---|---|---|
叶脉分级 | 1-3级 | 4级及以上 |
结构特征 | 结构复杂; 含有较多的厚壁组织、厚角组织或纤维细胞, 具有较高的机械阻力和弹性; 含有1个或多个维管束, 木质部和韧皮部间常具有形成层; 易发生木质部栓塞 | 结构简单; 缺少维管束周围的坚固厚壁组织; 一般不具有形成层; 不易发生木质部栓塞 |
主要功能 | 长距离水分运输; 机械支持, 维持叶形; 抵抗生物损害及非生物干扰 | 短距离水分运输; 与气孔协作限制水分蒸发, 从而影响蒸腾作用和光合作用; 形成闭环, 为水分运输提供备选路径 |
图1 叶片性状与叶脉密度之间的关系框架 黄色变量为脉源假说中涉及的变量; 粉色变量为通量性状网络假说中涉及的变量; 蓝色变量为2个假说共同涉及的部分。黑色箭头表示正相关, 红色箭头表示负相关; 虚线箭头表示间接关联。
Figure 1 Correlation between leaf traits and leaf vein density The yellow variable is involved in the vein origin hypothesis; the pink variable is involved in the flux trait network hypothesis; the blue variable is the part involved in both hypotheses. A black solid arrow indicates a positive association, while a red arrow indicates a negative association; the dashed arrow indicates an indirect association.
[1] | 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学 45, 325-339. |
[2] | 罗丽莹, 陈楠, 王云龙, 王光军 (2021). 闽楠叶形态与叶脉网络性状关系对城市生长环境的响应. 生态学报 41, 7838- 7847. |
[3] | 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道 (2015). 高粱、紫苏叶脉密度与光合特性的关系. 植物学报 50, 100-106. |
[4] | 孙素静, 李芳兰, 包维楷 (2015). 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报 23, 353-360. |
[5] | 徐龙, 贺鹏程, 张统, 刘慧, 叶清 (2020). 不同原生境的6种棕榈科植物叶片水力性状的对比研究. 热带亚热带植物学报 28, 472-478. |
[6] | 姚广前, 魏阳, 毕敏慧, 聂争飞, 方向文 (2018). 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系. 中国沙漠 38, 1252-1258. |
[7] | 朱济友, 徐程扬, 刘亚培, 李金航, 黄涛, 覃国铭, 崔哲浩 (2019). 基于遥感的植物叶脉功能性状计算及其生态学意义. 生态科学 38, 209-216. |
[8] | Amakawa T (1981). Studies on the character of leaves for distinguishing tree-species in the field, 2. The venation of leaves of dicotyledons. Bulletin of Nakamura Gakuen University and Nakamura Gakuen Junior College 14, 13- 22. |
[9] |
Banavar JR, Maritan A, Rinaldo A (1999). Size and form in efficient transportation networks. Nature 399, 130-132.
DOI URL |
[10] |
Beerling DJ, Franks PJ (2010). The hidden cost of transpiration. Nature 464, 495-496.
DOI URL |
[11] |
Blonder B, Baldwin BG, Enquist BJ, Robichaux RH (2016). Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). J Ecol 104, 219-228.
DOI URL |
[12] |
Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y (2020). Linking functional traits to multiscale statistics of leaf venation networks. New Phytol 228, 1796-1810.
DOI URL |
[13] |
Blonder B, Enquist BJ (2014). Inferring climate from angiosperm leaf venation networks. New Phytol 204, 116-126.
DOI URL |
[14] |
Blonder B, Vasseur F, Violle C, Shipley B, Enquist BJ, Vile D (2015). Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049.
DOI URL |
[15] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14, 91-100.
DOI URL |
[16] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2014). Inclusion of vein traits improves predictive power for the leaf economic spectrum: a response to Sack et al. (2013). J Exp Bot 65, 5109-5114.
DOI URL |
[17] |
Blonder B, Violle C, Enquist BJ (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populu tremuloides. J Ecol 101, 981-989.
DOI URL |
[18] | Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc Biol Sci 276, 1771- 1776. |
[19] |
Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13, 175-183.
DOI PMID |
[20] |
Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144, 1890-1898.
PMID |
[21] |
Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37, 488-498.
DOI URL |
[22] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol 192, 437-448.
DOI PMID |
[23] | Chen XP, Sun J, Wang MT, Lyu M, Niklas KJ, Michaletz ST, Zhong QL, Cheng DL (2020). The leaf economics spectrum constrains phenotypic plasticity across a light gradient. Front Plan Sci 11, 735. |
[24] |
Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28, 1082- 1089.
DOI URL |
[25] |
Coley PD (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53, 209-234.
DOI URL |
[26] |
Dodds PS (2010). Optimal form of branching supply and collection networks. Phys Rev Lett 104, 048702.
DOI URL |
[27] |
Dow GJ, Berry JA, Bergmann DC (2013). The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsi thaliana. New Phytol 201, 1205-1217.
DOI URL |
[28] |
Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian plantago radiation. Int J Plant Sci 170, 61-75.
DOI URL |
[29] |
Durand M (2006). Architecture of optimal transport networks. Phys Rev E 73, 016116.
DOI URL |
[30] |
Durand M (2007). Structure of optimal transport networks subject to a global constraint. Phys Rev Lett 98, 088701.
DOI URL |
[31] |
Fajardo A, Siefert A (2018). Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024-1030.
DOI PMID |
[32] |
Fiorin L, Brodribb TJ, Anfodillo T (2016). Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. New Phytol 209, 216-227.
DOI PMID |
[33] |
Hickey LJ (1973). Classification of the architecture of dicotyledonous leaves. Am J Bot 60, 17-33.
DOI URL |
[34] |
Hua L, He P, Goldstein G, Liu H, Yin D, Zhu S, Ye Q (2020). Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. Plant Biol J 22, 212-220.
DOI URL |
[35] |
Ji WL, LaZerte SE, Waterway MJ, Lechowicz MJ (2020). Functional ecology of congeneric variation in the leaf economics spectrum. New Phytol 225, 196-208.
DOI URL |
[36] |
John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017). The anatomical and compositional basis of leaf mass per area. Ecol Lett 20, 412-425.
DOI URL |
[37] |
Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH (2013). Climate drives vein anatomy in Proteaceae. Am J Bot 100, 1483-1493.
DOI URL |
[38] |
Kang J, Dengler N (2004). Vein pattern development in adult leaves of Arabidopsi thaliana. Int J Plant Sci 165, 231-242.
DOI URL |
[39] |
Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG (2007). Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsi thaliana. Planta 226, 1207- 1218.
DOI URL |
[40] |
Katifori E, Szöllősi GJ, Magnasco MO (2010). Damage and fluctuations induce loops in optimal transport networks. Phys Rev Lett 104, 048704.
DOI URL |
[41] |
Kawai K, Okada N (2016). How are leaf mechanical properties and water-use traits coordinated by vein traits? A case study in Fagaceae. Funct Ecol 30, 527-536.
DOI URL |
[42] |
Kawai K, Okada N (2019). Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits. Planta 251, 17.
DOI URL |
[43] |
Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186, 708-721.
DOI PMID |
[44] |
Li FL, McCulloh KA, Sun SJ, Bao WK (2018). Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses. Am J Bot 105, 1858-1868.
DOI URL |
[45] |
Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol 199, 311-321.
DOI PMID |
[46] | Luo LY, Chen N, Wang YL, Wang GJ (2021). Response of leaf morphology and vein network traits of Phoebe bournei to urban growth environment. Acta Ecol Sin 41, 7838- 7847. |
[47] |
Martin AR, Isaac ME (2021). The leaf economics spectrum’s morning coffee: plant size-dependent changes in leaf traits and reproductive onset in a perennial tree crop. Ann Bot 127, 483-493.
DOI URL |
[48] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175, 447-460.
DOI URL |
[49] |
Meziane D, Shipley B (2001). Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann Bot 88, 915-927.
DOI URL |
[50] |
Murphy MRC, Jordan GJ, Brodribb TJ (2012). Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ 35, 1407-1418.
DOI URL |
[51] |
Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytol 196, 788-798.
DOI PMID |
[52] |
Nardini A, Ramani M, Gortan E, Salleo S (2008). Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus). Physiol Plant 133, 755-764.
DOI PMID |
[53] |
Navas ML, Ducout B, Roumet C, Richarte J, Garnier J, Garnier E (2003). Leaf life span, dynamics and construction cost of species from Mediterranean old-fields differing in successional status. New Phytol 159, 213-228.
DOI URL |
[54] |
Niinemets Ü (1999). Research review. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol 144, 35-47.
DOI URL |
[55] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol 21, 28-40. |
[56] | Niinemets Ü, Sack L (2006). Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J, eds. Progress in Botany. Berlin, Heidelberg: Springer. pp. 385-419. |
[57] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytol 143, 19-31.
DOI URL |
[58] |
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA (2008). Optimal vein density in artificial and real leaves. Proc Natl Acad Sci USA 105, 9140-9144.
DOI URL |
[59] |
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE Jr, Van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011). Global patterns of leaf mechanical properties. Ecol Lett 14, 301-312.
DOI URL |
[60] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340, 741-744.
DOI URL |
[61] |
Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182, 565-588.
DOI URL |
[62] |
Price CA, Wing S, Weitz JS (2012). Scaling and structure of dicotyledonous leaf venation networks. Ecol Lett 15, 87- 95.
DOI URL |
[63] |
Read J, Sanson GD (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160, 81-99.
DOI URL |
[64] |
Read J, Stokes A (2006). Plant biomechanics in an ecological context. Am J Bot 93, 1546-1565.
DOI URL |
[65] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94, 13730-13734.
DOI URL |
[66] |
Roderick ML, Berry SL, Noble IR, Farquhar GD (1999). A theoretical approach to linking the composition and morphology with the function of leaves. Funct Ecol 13, 683- 695.
DOI URL |
[67] |
Rolland-Lagan AG, Amin M, Pakulska M (2009). Quantifying leaf venation patterns: two-dimensional maps. J Plant 57, 195-205.
DOI URL |
[68] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Ann Bot 87, 553-566.
DOI URL |
[69] |
Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant Cell Environ 26, 1343-1356.
DOI URL |
[70] |
Sack L, Holbrook NM (2006). Leaf hydraulics. Annu Rev Plant Biol 57, 361-381.
DOI URL |
[71] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198, 983-1000.
DOI URL |
[72] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J Exp Bot 64, 4053-4080.
DOI URL |
[73] |
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3, 837.
DOI URL |
[74] |
Sack L, Streeter CM, Holbrook NM (2004). Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol 134, 1824-1833.
DOI URL |
[75] |
Schoch PG, Zinsou C, Sibi M (1980). Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. 1. Effect of light intensity. J Exp Bot 31, 1211-1216.
DOI URL |
[76] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156, 832-843.
DOI URL |
[77] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf eco- nomics spectrum. Ecology 87, 535-541.
PMID |
[78] |
Turgeon R (2006). Phloem loading: how leaves gain their independence. BioScience 56, 15-24.
DOI URL |
[79] | Tyree MT, Sobrado M, Stratton LJ, Becker P (1999). Diversity of hydraulic conductance in leaves of temperate and tropical species: possible causes and consequences. J Trop For Sci 11, 47-60. |
[80] |
Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeogr Palaeoclimatol Palaeoecol 149, 15-26.
DOI URL |
[81] |
Van Arendonk JJCM, Poorter H (1994). The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17, 963-970.
DOI URL |
[82] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos 116, 882-892.
DOI URL |
[83] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs mass- based expression of leaf traits. New Phytol 199, 322-323.
DOI PMID |
[84] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14, 411-421.
DOI URL |
[85] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature 428, 821-827.
DOI URL |
[86] |
Wright IJ, Westoby M (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155, 403-416.
DOI PMID |
[87] |
Xu H, Blonder B, Jodra M, Malhi Y, Fricker M (2021). Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol 229, 631-648.
DOI URL |
[88] |
Zwieniecki MA, Boyce CK, Holbrook NM (2004). Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ 27, 357-365.
DOI URL |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 0-0. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[4] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[5] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[6] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[7] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[8] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[9] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[11] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
[12] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[13] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[14] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[15] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||