植物学报 ›› 2021, Vol. 56 ›› Issue (4): 480-487.DOI: 10.11983/CBB21034
收稿日期:
2021-02-08
接受日期:
2021-05-28
出版日期:
2021-07-01
发布日期:
2021-06-30
通讯作者:
高英,刘君
作者简介:
liujun@caas.cn基金资助:
Tiantian Shi1, Ying Gao1,*(), Huan Wang2,3, Jun Liu1,*()
Received:
2021-02-08
Accepted:
2021-05-28
Online:
2021-07-01
Published:
2021-06-30
Contact:
Ying Gao,Jun Liu
摘要: 植物病害严重威胁全球粮食生产, 研究植物对病原菌防御机制和病原菌对寄主作物的侵染过程和分子机制, 有助于改良植物种源使其获得持久抗性。近年来, 日渐增多的研究表明, 一些抗病蛋白需要转移到细胞核内才能启动免疫反应, 进而发挥抗病防御作用, 而细胞核质转运受体是实现这些抗病蛋白核质转运必不可少的“载体”。因此, 细胞核质转运及转运受体在抗病防御中发挥重要作用。该文在介绍植物抗病防御反应机制的基础上, 综述了细胞核质转运及核质转运受体在植物抗病防御反应中的作用研究进展, 并对未来的研究方向进行了展望。
石添添, 高英, 王欢, 刘君. 细胞核质转运及其受体在植物抗病防御反应中的调控作用. 植物学报, 2021, 56(4): 480-487.
Tiantian Shi, Ying Gao, Huan Wang, Jun Liu. Nucleo-cytoplasmic Transport and Transport Receptors in Plant Disease Resistance Defense Response. Chinese Bulletin of Botany, 2021, 56(4): 480-487.
图1 植物免疫机制 PTI: 模式触发免疫; ETI: 效应子触发免疫; PRRs: 质膜定位的模式识别受体; MAPKs: 丝裂原激活蛋白激酶
Figure 1 Mechanism of plant immunity PTI: Pattern-triggered immunity; ETI: Effector trigger immunity; PRRs: The plasma membrane (PM)-localized pattern recognition receptors; MAPKs: Mitogen-activated protein kinase
图2 核质转运及转运受体 NLS: 核定位信号; NPC: 核孔复合物; NES: 核输出信号
Figure 2 Nucleocytoplasmic transport and nucleocytoplasmic transport receptors NLS: Nuclear localization signal; NPC: Nuclear pore complexes; NES: Nuclear export signal
[1] | 高英, 赵开军, 郭建强, 赵金凤 (2010). 植物中的核质转运相关蛋白. 中国生物化学与分子生物学报 26, 705-711. |
[2] | 王伟, 唐定中 (2021). 两类免疫受体强强联手筑牢植物免疫防线. 植物学报 56, 142-146. |
[3] | 昝新丽, 高英, 陈玉玲, 赵开军 (2013). 病原菌诱导型启动子顺式作用元件及其互作的转录因子. 植物学报 48, 219-229. |
[4] |
Alhoraibi H, Bigeard J, Rayapuram N, Colcombet J, Hirt H (2019). Plant immunity: the MTI-ETI model and beyond. Curr Issues Mol Biol 30, 39-58.
DOI PMID |
[5] |
Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007). A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5, e68.
DOI URL |
[6] |
Cesari S (2018). Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219, 17-24.
DOI URL |
[7] |
Cheng YT, Germain H, Wiermer M, Bi DL, Xu F, García AV, Wirthmueller L, Després C, Parker JE, Zhang YL, Li X (2009). Nuclear pore complex component MOS7/ Nup88 is required for innate immunity and nuclear accu-mulation of defense regulators in Arabidopsis. Plant Cell 21, 2503-2516.
DOI PMID |
[8] |
Couto D, Zipfel C (2016). Regulation of pattern recognition receptor signaling in plants. Nat Rev Immunol 16, 537-552.
DOI URL |
[9] |
Cui H, Tsuda K, Parker JE (2015). Effector-triggered im-munity: from pathogen perception to robust defense. Annu Rev Plant Biol 66, 487-511.
DOI URL |
[10] |
Deslandes L, Olivier J, Peeters N, Feng DX, Khounlo-tham M, Boucher C, Somssich I, Genin S, Marco Y (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100, 8024-8029.
DOI URL |
[11] |
Deslandes L, Rivas S (2011). The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal Behav 6, 42-48.
PMID |
[12] |
Dong OX, Meteignier LV, Plourde MB, Ahmed B, Wang M, Jensen C, Jin HL, Moffett P, Li X, Germain H (2016). Arabidopsis TAF15b localizes to RNA processing bodies and contributes to snc1-mediated autoimmunity. Mol Plant Microbe Interact 29, 247-257.
DOI URL |
[13] |
Froidure S, Canonne J, Daniel X, Jauneau A, Brière C, Roby D, Rivas S (2010). A tsPLA2-α nuclear relocaliza-tion by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci USA 107, 15281-15286.
DOI URL |
[14] |
García AV, Parker JE (2009). Heaven’s gate: nuclear ac-cessibility and activities of plant immune regulators. Trends Plant Sci 14, 479-487.
DOI PMID |
[15] |
Germain H, Qu N, Cheng YT, Lee E, Huang Y, Dong OX, Gannon P, Huang S, Ding PT, Li YZ, Sack F, Zhang YL, Li X (2010). MOS11: a new component in the mRNA export pathway. PLoS Genet 6, e1001250.
DOI URL |
[16] |
Gu YN, Zebell SG, Liang ZZ, Wang S, Kang BH, Dong XN (2016). Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166, 1526-1538.
DOI URL |
[17] |
Jacob F, Kracher B, Mine A, Seyfferth C, Blanvillain- Baufumé S, Parker JE, Tsuda K, Schulze-Lefert P, Maekawa T (2018). A dominant-interfering camta3 muta-tion compromises primary transcriptional outputs mediated by both cell surface and intracellular immune recep-tors in Arabidopsis thaliana. New Phytol 217, 1667-1680.
DOI URL |
[18] |
Jones JDG, Dangl JL (2006). The plant immune system. Nature 444, 323-329.
DOI URL |
[19] |
Kimura M, Imamoto N (2014). Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 15, 727-748.
DOI URL |
[20] |
Lee HJ, Park YJ, Seo PJ, Kim JH, Sim HJ, Kim SG, Park CM (2015). Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell 27, 3425-3438.
DOI URL |
[21] |
Li X, Kapos P, Zhang YL (2015). NLRs in plants. Curr Opin Immunol 32, 114-121.
DOI URL |
[22] |
Liu J, Gitta C (2008). Nuclear trafficking during plant innate immunity. Mol Plant 1, 411-422.
DOI URL |
[23] |
Lolle S, Stevens D, Coaker G (2020). Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr Opin Immunol 62, 99-105.
DOI URL |
[24] | Lüdke D, Roth C, Hartken D, Wiermer M (2018). MOS6 and TN13 in plant immunity. Plant Signal Behav 13, e1454 816. |
[25] |
Lüdke D, Roth C, Kamrad SA, Messerschmidt J, Hartken D, Appel J, Hörnich BF, Yan QQ, Kusch S, Klenke M, Gunkel A, Wirthmueller L, Wiermer M (2021). Func-tional requirement of the Arabidopsis importin-α nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. Plant J 105, 994-1009.
DOI URL |
[26] |
Malik NAA, Kumar IS, Nadarajah K (2020). Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci 21, 963.
DOI URL |
[27] |
McDonald BA, Stukenbrock EH (2016). Rapid emergence of pathogens in agro-ecosystems: global threats to agri-cultural sustainability and food security. Philos Trans R Soc Lond B Biol Sci 371, 20160026.
DOI URL |
[28] |
Merkle T (2001). Nuclear import and export of proteins in plants: a tool for the regulation of signaling. Planta 213, 499-517.
PMID |
[29] |
Merkle T (2003). Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signaling. Curr Genet 44, 231-260.
DOI URL |
[30] |
Monteiro F, Nishimura MT (2018). Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu Rev Phytopathol 56, 243-267.
DOI PMID |
[31] | Ngou BPM, Ahn HK, Ding PT, Jones JDG (2021). Mutual potentiation of plant immunity by cell-surface and intra-cellular receptors. Nature 592, 110-115. |
[32] |
Palma K, Zhang YL, Li X (2005). An importin α homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 15, 1129-1135.
DOI URL |
[33] |
Pan HR, Liu SM, Tang DZ (2012). HPR1, a component of the THO/TREX complex, plays an important role in disease resistance and senescence in Arabidopsis. Plant J 69, 831-843.
DOI URL |
[34] |
Park CJ, Ronald PC (2012). Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun 3, 920.
DOI URL |
[35] |
Roth C, Lüdke D, Klenke M, Quathamer A, Valerius O, Braus GH, Wiermer M (2017). The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-α3 interaction partner required for plant immunity. Plant J 92, 808-821.
DOI URL |
[36] |
Roth C, Wiermer M (2012). Nucleoporins Nup160 and Seh1 are required for disease resistance in Arabidopsis. Plant Signal Behav 7, 1212-1214.
DOI URL |
[37] |
Saijo Y, Loo EP (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol 225, 87-104.
DOI URL |
[38] |
Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019). The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3, 430-439.
DOI PMID |
[39] |
Shen QH, Schulze-Lefert P (2007). Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear act-ion of plant immune receptors. EMBO J 26, 4293-4301.
DOI URL |
[40] |
Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ (2010). Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10, 248.
DOI PMID |
[41] |
Sloan KE, Gleizes PE, Bohnsack MT (2016). Nucleo-cytoplasmic transport of RNAs and RNA-protein comple-xes. J Mol Biol 428, 2040-2059.
DOI URL |
[42] |
Tameling WIL, Baulcombe DC (2007). Physical association of the NB-LRR resistance protein Rx with a Ran GTPase- activating protein is required for extreme resistance to Po-tato virus X. Plant Cell 19, 1682-1694.
DOI URL |
[43] |
Tang DZ, Wang GX, Zhou JM (2017). Receptor kinases in plant-pathogen interactions: more than pattern recogni-tion. Plant Cell 29, 618-637.
DOI URL |
[44] |
Teh OK, Hofius D (2014). Membrane trafficking and autop-hagy in pathogen-triggered cell death and immunity. J Exp Bot 65, 1297-1312.
DOI URL |
[45] | Vannier N, Agler M, Hacquard S (2019). Microbiota-mediated disease resistance in plants. PLoS Pathog 15, e100 7740. |
[46] |
Wang W, Feng BM, Zhou JM, Tang DZ (2020). Plant im-mune signaling: advancing on two frontiers. J Integr Plant Biol 62, 2-24.
DOI URL |
[47] |
Wang WM, Liu PQ, Xu YJ, Xiao SY (2016). Protein traf-ficking during plant innate immunity. J Integr Plant Biol 58, 284-298.
DOI URL |
[48] |
Wiermer M, Palma K, Zhang YL, Li X (2007). Should I stay or should I go? nucleocytoplasmic trafficking in plant in-nate immunity. Cell Microbiol 9, 1880-1890.
PMID |
[49] |
Wirthmueller L, Zhang Y, Jones JD, Parker JE (2007). Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent de-fense. Curr Biol 17, 2023-2029.
PMID |
[50] |
Wu Y, Zhou JM (2013). Receptor-like kinases in plant innate immunity. J Integr Plant Biol 55, 1271-1286.
DOI URL |
[51] |
Xie YH, Ren Y (2019). Mechanisms of nuclear mRNA ex-port: a structural perspective. Traffic 20, 829-840.
DOI URL |
[52] | Xu K, Tao T, Jie J, Lu XD, Li XZ, Mehmood MA, He H, Liu Z, Xiao XY, Yang J, Ma JX, Li W, Zhou YP, Liu ZG (2013). Increased importin 13 activity is associated with the pathogenesis of pterygium. Mol Vis 19, 604-613. |
[53] |
Xu SH, Zhang ZB, Jing BB, Gannon P, Ding JM, Xu F, Li X, Zhang YL (2011). Transportin-SR is required for proper splicing of Resistance genes and plant immunity. PLoS Genet 7, e1002159.
DOI URL |
[54] |
Yoshimura S, Kumeta M, Takeyasu K (2014). Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins. Structure 22, 1699-1710.
DOI PMID |
[55] | Yuan MH, Jiang ZY, Bi GZ, Nomura K, Liu MH, Wang YP, Cai BY, Zhou JM, He SY, Xin XF (2021). Pattern- recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105-109. |
[56] |
Zhang YL, Li X (2005). A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17, 1306-1316.
DOI URL |
[57] |
Zheng Y, Zhan QD, Shi TT, Liu J, Zhao KJ, Gao Y (2020). The nuclear transporter SAD2 plays a role in calcium- and H2O2-mediated cell death in Arabidopsis. Plant J 101, 324-333.
DOI URL |
[58] |
Zhou JM, Zhang YL (2020). Plant immunity: danger per-ception and signaling. Cell 181, 978-989.
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||