植物学报 ›› 2018, Vol. 53 ›› Issue (1): 27-41.DOI: 10.11983/CBB17041
哈斯木其尔1,2, 张学耀1,2, 牛国祥1,2, 王银柳1,2, 黄建辉1,*()
收稿日期:
2017-03-09
接受日期:
2017-05-08
出版日期:
2018-01-01
发布日期:
2018-08-10
通讯作者:
黄建辉
基金资助:
Muqier Hasi1,2, Xueyao Zhang1,2, Guoxiang Niu1,2, Yinliu Wang1,2, Jianhui Huang1,*()
Received:
2017-03-09
Accepted:
2017-05-08
Online:
2018-01-01
Published:
2018-08-10
Contact:
Jianhui Huang
摘要: 氮沉降增加将影响草原生态系统固碳, 但如何影响草原生态系统CO2交换目前为止还没有定论。同时, 不同类型和剂量氮素对生态系统CO2交换影响的差异也不明确。选取内蒙古额尔古纳草甸草原, 开展了不同类型氮肥和不同剂量氮素添加条件下生态系统CO2交换的野外测定。实验设置尿素和缓释尿素2种类型氮肥各5个剂量水平(0、5.0、10.0、20.0和50.0 g N·m-2·a-1)。结果显示, 生长季初期及中期降雨量低时, 氮素添加抑制生态系统CO2交换; 而生长季末期降雨量较高时促进生态系统CO2交换。随着氮素添加水平的提高, NEE和GEP均显著增加, 当氮素添加量达到10 g N·m-2·a-1时, NEE和GEP的响应趋于饱和。2种氮肥(尿素和缓释尿素)仅在施氮量为5 g N·m-2·a-1时, 缓释尿素对生态系统CO2交换的促进作用显著大于尿素, 在其它添加剂量时差异不显著。研究结果表明: 氮素是该草甸草原生态系统的重要限制因子, 但氮沉降增加对生态系统CO2交换的影响强烈地受降雨量与降雨季节分配的限制, 不同氮肥(尿素和缓释尿素)对生态系统CO2交换作用存在差异。
哈斯木其尔, 张学耀, 牛国祥, 王银柳, 黄建辉. 氮素添加对内蒙古草甸草原生态系统CO2交换的影响. 植物学报, 2018, 53(1): 27-41.
Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia. Chinese Bulletin of Botany, 2018, 53(1): 27-41.
N addition rates (g N·m-2·a-1) | θν | Ts | NEE | ER | GEP | |
---|---|---|---|---|---|---|
Urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98a±0.38 | 3.85ab±0.12 | 6.81ab±0.48 |
5 | 12.79a±0.97 | 17.69a±0.76 | -3.13a±0.49 | 3.35a±0.22 | 6.48a±0.31 | |
10 | 12.29a±0.61 | 17.66a±0.32 | -3.77a±0.32 | 4.10ab±0.42 | 7.88b±0.29 | |
20 | 13.79a±0.47 | 17.71a±0.49 | -3.82a±0.27 | 4.23ab±0.23 | 8.05b±0.19 | |
50 | 13.41a±0.71 | 17.22a±0.22 | -2.88a±0.44 | 4.59b±0.33 | 7.48ab±0.61 | |
Slow-release urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98b±0.38 | 3.85a±0.12 | 6.81a±0.48 |
5 | 12.01a±0.74 | 18.07a±0.35 | -3.77ab±0.32 | 3.81a±0.25 | 7.58a±0.19 | |
10 | 12.51a±0.55 | 17.72a±0.35 | -4.80a±0.39 | 4.29a±0.32 | 9.10b±0.39 | |
20 | 14.49a±1.28 | 17.06a±0.27 | -3.15b±0.46 | 4.19a±0.37 | 7.34a±0.23 | |
50 | 14.26a±0.82 | 17.44a±0.42 | -2.93b±0.54 | 4.55a±0.27 | 7.47a±0.40 |
表1 生长季不同氮素添加水平下土壤温度、土壤含水量、生态系统净CO2交换、生态系统呼吸和生态系统总光合的季节均值
Table 1 Means of growing season soil temperature, soil moisture, net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis under different nitrogen addition rates
N addition rates (g N·m-2·a-1) | θν | Ts | NEE | ER | GEP | |
---|---|---|---|---|---|---|
Urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98a±0.38 | 3.85ab±0.12 | 6.81ab±0.48 |
5 | 12.79a±0.97 | 17.69a±0.76 | -3.13a±0.49 | 3.35a±0.22 | 6.48a±0.31 | |
10 | 12.29a±0.61 | 17.66a±0.32 | -3.77a±0.32 | 4.10ab±0.42 | 7.88b±0.29 | |
20 | 13.79a±0.47 | 17.71a±0.49 | -3.82a±0.27 | 4.23ab±0.23 | 8.05b±0.19 | |
50 | 13.41a±0.71 | 17.22a±0.22 | -2.88a±0.44 | 4.59b±0.33 | 7.48ab±0.61 | |
Slow-release urea | 0 | 11.48a±0.74 | 17.94a±0.66 | -2.98b±0.38 | 3.85a±0.12 | 6.81a±0.48 |
5 | 12.01a±0.74 | 18.07a±0.35 | -3.77ab±0.32 | 3.81a±0.25 | 7.58a±0.19 | |
10 | 12.51a±0.55 | 17.72a±0.35 | -4.80a±0.39 | 4.29a±0.32 | 9.10b±0.39 | |
20 | 14.49a±1.28 | 17.06a±0.27 | -3.15b±0.46 | 4.19a±0.37 | 7.34a±0.23 | |
50 | 14.26a±0.82 | 17.44a±0.42 | -2.93b±0.54 | 4.55a±0.27 | 7.47a±0.40 |
θν | Ts | NEE | ER | GEP | ||
---|---|---|---|---|---|---|
Urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N | 0.22 | 0.91 | 0.29 | 0.08 | 0.07 | |
Time×N | 0.66 | 0.56 | 0.01 | 0.01 | 0.03 | |
Slow-release urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SN | 0.38 | 0.49 | 0.04 | 0.34 | 0.01 | |
Time×SN | 0.63 | 0.74 | 0.003 | 0.15 | 0.002 |
表2 生长季测定时间和氮肥(尿素和缓释尿素) 2个因素对土壤温度、土壤含水量、生态系统净CO2交换、生态系统呼吸和生态系统总光合的主效应及其交互效应的重复测定方差分析(P值)
Table 2 Results (P-values) of repeated-measures ANOVA on the effects of sampling time, N addition (urea and slow-release urea), and their interactions on soil temperature, soil moisture, net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis during the growing season
θν | Ts | NEE | ER | GEP | ||
---|---|---|---|---|---|---|
Urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N | 0.22 | 0.91 | 0.29 | 0.08 | 0.07 | |
Time×N | 0.66 | 0.56 | 0.01 | 0.01 | 0.03 | |
Slow-release urea | Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SN | 0.38 | 0.49 | 0.04 | 0.34 | 0.01 | |
Time×SN | 0.63 | 0.74 | 0.003 | 0.15 | 0.002 |
图2 土壤表层(0-10 cm)铵态氮和硝态氮的季节动态(A), (B) 添加尿素; (C), (D) 添加缓释尿素。小图为添加不同剂量氮素后土壤氮素含量的季节均值(平均值±标准误, n=4)。不同小写字母表示处理间差异显著(P<0.05)。
Figure 2 Seasonal dynamics of soil NH4+-N and NO3--N at 0-10 cm depth(A), (B) Addition with urea; (C), (D) Addition with slow-release urea. In-set figures showed mean soil inorganic N contents with addition of N (means±SE, n=4). Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
图3 表层(0-10 cm)土壤pH值季节均值(平均值±标准误, n=4)(A) 添加尿素; (B) 添加缓释尿素。不同小写字母表示处理间差异显著(P<0.05)。
Figure 3 Seasonal means of pH at 0-10 cm soil (means±SE, n=4)(A) Addition with urea; (B) Addition with slow-release urea. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
N addition rates (g N·m-2·a-1) | ANPP | GB | FB | BGB | |
---|---|---|---|---|---|
Urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 157.74a±5.51 | 129.37a±11.10 | 24.33a±8.48 | 1575.31a±64.48 | |
10 | 216.29a±23.24 | 190.59a±19.71 | 24.07a±5.09 | 1941.26ab±226.12 | |
20 | 167.54a±21.06 | 125.55a±38.81 | 37.01a±16.07 | 2320.85b±99.68 | |
50 | 191.38a±40.72 | 182.04a±42.34 | 10.26a±3.16 | 1915.27ab±74.55 | |
Slow-release urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 166.24ab±11.86 | 129.16ab±10.48 | 28.49a±3.39 | 1632.48a±67.81 | |
10 | 238.34bc±35.71 | 188.39bc±45.45 | 50.16a±25.57 | 2127.48b±111.51 | |
20 | 261.06c±26.01 | 220.86c±19.61 | 40.48a±7.82 | 1942.56ab±123.40 | |
50 | 254.41c±24.63 | 227.08c±16.94 | 31.36a±16.22 | 1750.71ab±105.22 |
表3 氮素添加水平分别对地上净初级生产力、禾草类生物量、杂类草生物量和地下总生物量影响的单因素方差分析结果(平均值±标准误, n=4)
Table 3 Aboveground net primary productivity, grasses aboveground biomass, forb aboveground biomass and total belowground biomass under different nitrogen addition rates (means±SE, n=4)
N addition rates (g N·m-2·a-1) | ANPP | GB | FB | BGB | |
---|---|---|---|---|---|
Urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 157.74a±5.51 | 129.37a±11.10 | 24.33a±8.48 | 1575.31a±64.48 | |
10 | 216.29a±23.24 | 190.59a±19.71 | 24.07a±5.09 | 1941.26ab±226.12 | |
20 | 167.54a±21.06 | 125.55a±38.81 | 37.01a±16.07 | 2320.85b±99.68 | |
50 | 191.38a±40.72 | 182.04a±42.34 | 10.26a±3.16 | 1915.27ab±74.55 | |
Slow-release urea | 0 | 142.52a±16.85 | 96.86a±19.68 | 42.37a±13.05 | 1718.44a±172.36 |
5 | 166.24ab±11.86 | 129.16ab±10.48 | 28.49a±3.39 | 1632.48a±67.81 | |
10 | 238.34bc±35.71 | 188.39bc±45.45 | 50.16a±25.57 | 2127.48b±111.51 | |
20 | 261.06c±26.01 | 220.86c±19.61 | 40.48a±7.82 | 1942.56ab±123.40 | |
50 | 254.41c±24.63 | 227.08c±16.94 | 31.36a±16.22 | 1750.71ab±105.22 |
图4 不同氮素添加浓度下生态系统净CO2交换、生态系统呼吸和生态系统总光合季节动态(平均值±标准误)(A)-(C) 添加尿素; (D)-(F) 添加缓释尿素。NEE、ER和GEP同表1。
Figure 4 Seasonal variations in net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis under different nitrogen addition rates (means±SE)(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
图5 不同浓度尿素处理时生态系统净CO2交换、生态系统呼吸和生态系统总光合月动态(平均值±标准误, n=4)NEE、ER和GEP同表1。不同小写字母表示处理间差异显著(P<0.05)。
Figure 5 Seasonal patterns of net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis at different nitrogen addition rates with urea in each month (means±SE, n=4)NEE, ER and GEP see Table 1. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
图6 不同浓度缓释尿素处理时生态系统净CO2交换、生态系统呼吸和生态系统总光合的月动态(平均值±标准误, n=4)NEE、ER和GEP同表1。不同小写字母表示处理间差异显著(P<0.05)。
Figure 6 Seasonal patterns of net ecosystem CO2 exchange, ecosystem respiration and gross ecosystem photosynthesis at different nitrogen addition rates with slow-release urea in each month (means±SE, n=4) NEE, ER and GEP see Table 1. Different lowercase letters among columns indicate significant differences among treatments (P<0.05).
图7 生态系统净CO2交换、生态系统呼吸及生态系统总光合与表层(0-10 cm)土壤温度的相关性(A)-(C) 添加尿素; (D)-(F) 添加缓释尿素。NEE、ER和GEP同表1。
Figure 7 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with 0-10 cm soil temperature(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
图8 生态系统净CO2交换、生态系统呼吸及生态系统总光合与表层(0-10 cm)土壤含水量的相关性(A)-(C) 添加尿素; (D)-(F) 添加缓释尿素。NEE、ER和GEP同表1。
Figure 8 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with 0-10 cm soil moisture(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
图9 生态系统净CO2交换、生态系统呼吸及生态系统总光合与地下总生物量的相关性(A)-(C) 添加尿素; (D)-(F) 添加缓释尿素。NEE、ER和GEP同表1。
Figure 9 Relationships of net ecosystem CO2 exchange, ecosystem respiration or gross ecosystem photosynthesis with belowground biomass(A)-(C) Addition with urea; (D)-(F) Addition with slow-release urea. NEE, ER and GEP see Table 1.
N addition rates (g N·m-2·a-1) | ER | GEP | |
---|---|---|---|
Urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.95a±0.16 | 3.23ab±0.62 | |
10 | 0.59a±0.15 | 3.72ab±0.71 | |
20 | 0.76a±0.19 | 3.67ab±1.35 | |
50 | 0.74a±0.09 | 4.54b±0.34 | |
Slow-release urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.89a±0.14 | 4.21b±0.16 | |
10 | 1.43b±0.27 | 5.86c±0.61 | |
20 | 0.69a±0.12 | 3.46b±0.62 | |
50 | 0.92a±0.12 | 4.99bc±0.36 |
表4 不同氮素(尿素和缓释尿素)添加水平下生态系统呼吸(ER)和生态系统总光合(GEP)对土壤含水量的敏感性(平均值±标准误, n=4)
Table 4 Sensitivity of ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP) to soil moisture under different nitrogen addition rates (means±SE, n=4)
N addition rates (g N·m-2·a-1) | ER | GEP | |
---|---|---|---|
Urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.95a±0.16 | 3.23ab±0.62 | |
10 | 0.59a±0.15 | 3.72ab±0.71 | |
20 | 0.76a±0.19 | 3.67ab±1.35 | |
50 | 0.74a±0.09 | 4.54b±0.34 | |
Slow-release urea | 0 | 0.72a±0.09 | 1.86a±0.64 |
5 | 0.89a±0.14 | 4.21b±0.16 | |
10 | 1.43b±0.27 | 5.86c±0.61 | |
20 | 0.69a±0.12 | 3.46b±0.62 | |
50 | 0.92a±0.12 | 4.99bc±0.36 |
[1] | 陈德明, 王亭杰, 雨山江, 金涌 (2002). 缓释和控释尿素的研究与开发综述. 化工进展 21, 455-461. |
[2] | 陈佐忠, 汪诗平 (2000).中国典型草原生态系统. 北京: 科学出版社. |
[3] | 顾峰雪, 于贵瑞, 温学发, 陶波, 李克让, 刘允芬 (2008). 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报 32, 1041-1051. |
[4] | 吴平霄, 廖宗文, 毛小云 (2000). 改性尿素的肥效及淋溶特性研究初探. 土壤与环境 9, 75-76. |
[5] | 游成铭, 胡中民, 郭群, 干友民, 李凌浩, 白文明, 李胜功 (2016). 氮添加对内蒙古温带典型草原生态系统碳交换的影响. 生态学报 36, 2142-2150. |
[6] | 张丽华, 宋长春, 王德宣 (2006). 氮输入对沼泽湿地碳平衡的影响. 环境科学 27, 1257-1263. |
[7] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosy- stems: hypotheses revisited.Bioscience 48, 921-934. |
[8] | Aires LMI, Pio CA, Pereira JS (2008). Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years.Global Change Biol 14, 539-555. |
[9] | Arens SJT, Sullivan PF, Welker JM (2008). Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem. J Geophys Res 113, G03S09. |
[10] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and eco- system functioning: evidence from inner Mongolia grass- lands.Global Change Biol 16, 358-372. |
[11] | Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau.Ecology 89, 2140-2153. |
[12] | Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotro- phic bog.Global Change Biol 13, 1168-1186. |
[13] | Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biol 15, 2450-2461. |
[14] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phospho- rus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecol Lett 10, 1135-1142. |
[15] | Gruber N, Galloway JN (2008). An earth-system perspec- tive of the global nitrogen cycle.Nature 451, 293-296. |
[16] | Harpole WS, Potts DL, Suding KN (2007). Ecosystem responses to water and nitrogen amendment in a Cali- fornia grassland.Global Change Biol 13, 2341-2348. |
[17] | Hooper DU, Johnson L (1999). Nitrogen limitation in dryland ecosystems: responses to geographical and temporal va- riation in precipitation.Biogeochemistry 46, 247-293. |
[18] | Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004). Conver- gence across biomes to a common rain-use efficiency.Nature 429, 651-654. |
[19] | Hyvönen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, in- creased temperature and management on carbon seq- uestration in temperate and boreal forest ecosystems: a literature review.New Phytol 173, 463-480. |
[20] | Jasoni RL, Smith SD, Arnone JA (2005). Net ecosystem CO2 exchange in Mojave desert shrublands during the eighth year of exposure to elevated CO2.Global Change Biol 11, 749-756. |
[21] | Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K (2008). Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem.Agric Forest Meteor 148, 381-391. |
[22] | LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology 89, 371-379. |
[23] | Lü FM, Lü XT, Liu W, Han X, Zhang GM, Kong DL, Han XG (2011). Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China.Biol Fertility Soils 47, 187-196. |
[24] | Niu SL, Wu MY, Han YI, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytol 177, 209-219. |
[25] | Niu SL, Wu MY, Han YI, Xia JY, Zhang ZHE, Yang HJ, Wan SQ (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe.Global Change Biol 16, 144-155. |
[26] | Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ (2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe.Ecosystems 12, 915-926. |
[27] | Patrick L, Cable J, Potts D, lgnace D, Barron-Gafford G, Griffith A, Alpert H, Van Gestel N, Robertson T, Huxman TE, Zak J, Loik ME, Tissue D (2007). Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas.Oecologia 151, 704-718. |
[28] | Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ (2005). Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochem Cycl 19, GB1004. |
[29] | Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J (2003). Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply.Ecosystems 6, 46-60. |
[30] | Seagle SW, McNaughton SJ (1993). Simulated effects of precipitation and nitrogen on serengeti grassland produc- tivity.Biogeochemistry 22, 157-178. |
[31] | Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998). Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light.Ecol Monogr 68, 75-97. |
[32] | Tian DS, Niu SL, Pan QM, Ren TT, Chen SP, Bai YF, Han XG (2016). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland.Funct Ecol 30, 490-499. |
[33] | Tilman D, Fargione J, Wolff B, D`Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simeberloff D, Swackhamer D (2001). Forecasting agriculturally driven global environmental change.Science 292, 281-284. |
[34] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997). Human alteration of the global nitrogen cycle: sources and consequences.Ecol Appl 7, 737-750. |
[35] | Vose JM, Elliott KJ, Johnson DW, Tingey DT, Johnson MG (1997). Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine ( Pinus ponderosa Dong. ex Laws.). Plant Soil 190, 19-28. |
[36] | Wang LX, D'odorico P, O'halloran LR, Caylor K, Macko S (2010). Combined effects of soil moisture and nitrogen availability variations on grass productivity in African sa- vannas.Plant Soil 328, 95-108. |
[37] | Xia JY, Niu SL, Wan SQ (2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a tem- perate steppe.Global Change Biol 15, 1544-1556. |
[38] | Xia JY, Wan SQ (2008). Global response patterns of terr- estrial plant species to nitrogen addition.New Phytol 179, 428-439. |
[39] | Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate step- pe.Global Change Biol 16, 2345-2357. |
[40] | Yan LM, Chen SP, Huang JH, Lin GH (2011). Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe.Plant Soil 349, 227-240. |
[41] | Zhang XL, Tan YL, Li A, Ren TT, Chen SP, Wang LX, Huang JH (2015). Water and nitrogen availability co- control ecosystem CO2 exchange in a semiarid temperate steppe.Sci Rep 5, 15549. |
[1] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[2] | 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184. |
[3] | 张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 2018, 42(3): 349-360. |
[4] | 胡毅, 朱新萍, 贾宏涛, 韩东亮, 胡保安, 李典鹏. 围栏封育对天山北坡草甸草原生态系统碳交换的影响[J]. 植物生态学报, 2018, 42(3): 372-381. |
[5] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[6] | 初小静, 韩广轩, 邢庆会, 于君宝, 吴立新, 刘海防, 王光美, 毛培利. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2015, 39(7): 661-673. |
[7] | 孙殿超, 李玉霖, 赵学勇, 左小安, 毛伟. 围封和放牧对沙质草地碳水通量的影响[J]. 植物生态学报, 2015, 39(6): 565-576. |
[8] | 李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应[J]. 植物生态学报, 2014, 38(5): 440-451. |
[9] | 王铭, 刘兴土, 张继涛, 李秀军, 王国栋, 鲁新蕊, 李晓宇. 松嫩平原西部草甸草原5种典型植物群落土壤呼吸的时空动态[J]. 植物生态学报, 2014, 38(4): 396-404. |
[10] | 邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报, 2014, 38(2): 116-124. |
[11] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
[12] | 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. |
[13] | 郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34(8): 898-906. |
[14] | 张杰琦, 李奇, 任正炜, 杨雪, 王刚. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响[J]. 植物生态学报, 2010, 34(10): 1125-1131. |
[15] | 张璐, 黄建辉, 白永飞, 韩兴国. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2009, 33(3): 563-569. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||