植物学报 ›› 2017, Vol. 52 ›› Issue (1): 19-29.DOI: 10.11983/CBB16213
所属专题: 水稻生物学专辑 (2017年52卷1期)
收稿日期:
2016-11-09
接受日期:
2016-12-05
出版日期:
2017-01-01
发布日期:
2017-01-23
通讯作者:
李学勇
作者简介:
# 共同第一作者
基金资助:
Yan Chun, Xueyong Li*
Received:
2016-11-09
Accepted:
2016-12-05
Online:
2017-01-01
Published:
2017-01-23
Contact:
Li Xueyong
About author:
# Co-first authors
摘要: 穗型作为水稻(Oryza sativa)重要的农艺性状, 近年来一直是研究热点。该文简要介绍了水稻穗部发育的一般过程, 总结了近年来发现的调控水稻穗型相关基因, 并根据水稻幼穗发育过程将其分为4类: 分别调控枝梗分生组织的形成、枝梗分生组织的大小、小穗分生组织的转变时间以及枝梗的伸长; 并概括分析了上述基因在调控水稻幼穗发育过程中所呈现出的路径关系。最后对水稻穗型遗传调控研究的未来发展方向进行了展望。
淳雁, 李学勇. 水稻穗型的遗传调控研究进展. 植物学报, 2017, 52(1): 19-29.
Yan Chun, Xueyong Li. Research Progress in Genetic Regulation of Rice Panicle Architecture. Chinese Bulletin of Botany, 2017, 52(1): 19-29.
图1 水稻穗发育模式……PBM: 一级枝梗分生组织; AM: 穗轴分生组织; SBM: 二级枝梗分生组织; MA: 穗主轴; PB: 一级枝梗; SB: 二级枝梗; LS: 侧生小穗; TS: 终端小穗; DP: 退化点
Figure 1 Diagram of rice inflorescence development……PBM: Primary branch meristem; AM: Axis meristem; SBM: Secondary branch meristem; MA: Main axis; PB: Primary branch; SB: Secondary branch; LS: Lateral spikelet; TS: Terminal spikelet; DP: Degenerate point
图2 生长素介导的水稻分生组织形成^BM: 枝梗分生组织; OsYUC1: Oryza sativa YUCCA1; OsPIN1: Oryza sativa PIN-FORMED 1; OsPID1: Oryza sativa PINOID 1; PAY1: Plant Architecture and Yield 1; ASP1: Aberrant Spikelet and Panicle 1; ARF: Auxin-response Factor; TDD1: Tryptophan Deficient Dwarf 1; LAX: Lax Panicle; APO: Aberrant Panicle Organization; RFL: Rice LFY Homolog; SPA: Small Panicle
Figure 2 Auxin-mediated meristem initiations in rice^BM: Branch meristem; OsYUC1: Oryza sativa YUCCA1; OsPIN1: Oryza sativa PIN-FORMED 1; OsPID1: Oryza sativa PINOID 1; PAY1: Plant Architecture and Yield 1; ASP1: Aberrant Spikelet and Panicle 1; ARF: Auxin-response Factor; TDD1: Tryptophan Deficient Dwarf 1; LAX: Lax Panicle; APO: Aberrant Panicle Organization; RFL: Rice LFY Homolog; SPA: Small Panicle
图3 细胞分裂素调控水稻生殖分生组织大小^BM: 枝梗分生组织; LOG: Lonely Guy; EP3: Erect Panicle 3; LP: Large Panicle; Gn1a: Grain Number 1a; OsCKX2: Oryza sativa Cytokinin Oxidase/Dehydrogenase 2; DST: Drought and Salt Tolerance; DEP1: Dense and Erect Panicle 1; OsWUS: Oryza sativa WUS; FON1: FLORAL ORGAN NUMBER 1
Figure 3 Cytokinins regulate reproductive meristem size in rice^BM: Branch meristem; LOG: Lonely Guy; EP3: Erect Panicle 3; LP: Large Panicle; Gn1a: Grain Number 1a; OsCKX2: Oryza sativa Cytokinin Oxidase/Dehydrogenase 2; DST: Drought and Salt Tolerance; DEP1: Dense and Erect Panicle 1; OsWUS: Oryza sativa WUS; FON1: FLORAL ORGAN NUMBER 1
图4 水稻从枝梗分生组织形成期向小穗分生组织形成期的转变^BM: 枝梗分生组织; SM: 小穗分生组织; FZP: Frizzy Panicle; BFL1: Branched Floretless 1; APO: Aberrant Panicle Organization; RFL: Rice LFY Homolog; CPB1: Clustered Primary Branch 1; Ghd8: Grain number, Plant height, and Heading date 8; MOC1: MONOCULM 1; RCN: Reduced Culm Number; OsMADS: Oryza sativa MADS-box gene; PAP2: Panicle phytomer 2; TAW1: Regulator of Rice Inflorescence Architecture, TAWAWA1; SPL: Squamosa Promoter Binding Protein Like; miR: microRNA
Figure 4 Transition from inflorescence meristem to spikelet meristem in rice^BM: Branch meristem; SM: Spikelet meristem; FZP: Frizzy Panicle; BFL1: Branched Floretless1; APO: Aberrant Panicle Organization; RFL: Rice LFY Homolog; CPB1: Clustered Primary Branch 1; Ghd8: Grain number, Plant height, and Heading date 8; MOC1: MONOCULM 1; RCN: Reduced Culm Number; OsMADS: Oryza sativa MADS-box gene; PAP2: Panicle phytomer 2; TAW1: Regulator of Rice Inflorescence Architecture, TAWAWA1; SPL: Squamosa Promoter Binding Protein Like; miR: microRNA
图5 水稻枝梗的伸长生长^IB: 花序枝梗; DEP2: Dense and Erect Panicle 2; EP2: Erect Panicle 2; SRS1: Small and Round Seed 1; SP1: Short Panicle 1
Figure 5 Elongation growth of rice branch^IB: Inflorescence branch; DEP2: Dense and Erect Panicle 2; EP2: Erect Panicle 2; SRS1: Small and Round Seed 1; SP1: Short Panicle 1
[1] | 丁颖, 李乃铭, 徐雪宾 (1959). 发育和谷粒充实过程的观察. 农业学报 10, 59-80. |
[2] | 鞠培娜, 方云霞, 邹国兴, 彭友林, 孙川, 胡江, 董国军, 曾大力, 郭龙彪, 张光恒, 高振宇, 钱前 (2010). 一个新的水稻叶形突变体(tll1)的遗传分析与精细定位. 植物学报 45, 654-661. |
[3] | 刘丹, 王嘉宇, 刘进, 马殿荣, 赵明辉, 陈温福 (2015). 水稻散状穗突变体sp的遗传分析及基因初定位. 植物学报 50, 198-205. |
[4] | 吴光南, 张云桥 (1962). 稻穗发育过程及其控制途径的研究. 作物学报 1, 43-52. |
[5] | 杨德卫, 曾美娟, 卢礼斌, 叶宁, 刘成德, 郑向华, 叶新福 (2011). 一个水稻矮秆突变体的遗传分析及基因定位. 植物学报 46, 617-624. |
[6] | 张淑红 (2005). 水稻中控制形态结构建成相关基因的功能研究. 博士论文. 上海: 复旦大学. pp. 72-78. |
[7] | Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010). The SMALL AND ROUND SEED1 (SRS1/ DEP2) gene is involved in the regulation of seed size in rice.Genes Genet Syst 85, 327-339. |
[8] | Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009). d14, a strigolactone- insensitive mutant of rice, shows an accelerated outgrowth of tillers.Plant Cell Physiol 50, 1416-1424. |
[9] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005). Cytokinin oxidase regulates rice grain production.Science 309, 741-745. |
[10] | Benjamins R, Scheres B (2008). Auxin: the looping star in plant development.Annu Rev Plant Biol 59, 443-465. |
[11] | Carmona MJ, Calonje M, Martinez-Zapater JM (2007). The FT/TFL1 gene family in grapevine.Plant Mol Biol 63, 637-650. |
[12] | Cheng YF, Zhao YD (2007). A role for auxin in flower development.J Integr Plant Biol 49, 99-104. |
[13] | Chuck G, Muszynski MG, Kellogg EA, Hake S, Schmidt RJ (2002). The control of spikelet meristem identity by the branched silkless1 gene in maize.Science 298, 1238-1241. |
[14] | Danilevskaya ON, Meng X, Ananiev EV (2010). Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize.Plant Physiol 153, 238-251. |
[15] | Delker C, Raschke A, Quint M (2008). Auxin dynamics: the dazzling complexity of a small molecule’s message.Planta 227, 929-941. |
[16] | Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1, and CAULIFLO- WER.Development 127, 725-734. |
[17] | Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009). Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet 41, 494-497. |
[18] | Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007). Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.Plant J 51, 1030-1040. |
[19] | Ikeda K, Sunohara H, Nagato Y (2004). Development course of inflorescence and spikelet in rice.Breeding Sci 54, 147-156. |
[20] | Ikedakawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y (2012). ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.Plant J 69, 168-180. |
[21] | Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005). Suppression of tiller bud activity in tillering dwarf mutants of rice.Plant Cell Physiol 46, 79-86. |
[22] | Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005). Rice plant development: from zygote to spikelet.Plant Cell Physiol 46, 23-47. |
[23] | Kato T, Horibata A (2012). A novel frameshift mutant allele, fzp-10, affecting the panicle architecture of rice.Euphytica 184, 65-72. |
[24] | Kempin SA, Savidge B, Yanofsky MF (1995). Molecular basis of the cauliflower phenotype in Arabidopsis.Science 267, 522-525. |
[25] | Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a). LAX and SPA: major regulators of shoot branching in rice.Proc Natl Acad Sci USA 100, 11765-11770. |
[26] | Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003b). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development 130, 3841-3850. |
[27] | Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001). The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development.Dev Biol 231, 364-373. |
[28] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme.Nature 445, 652-655. |
[29] | Kyozuka J (2007). Control of shoot and root meristem function by cytokinin.Curr Opin Plant Biol 10, 442-446. |
[30] | Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC (2010). Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.Cell Res 20, 838-849. |
[31] | Li M, Tang D, Wang K, Wu XR, Lu LL, Yu HX, Gu MH, Yan CJ, Cheng ZK (2011). Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.Plant Biotechnol J 9, 1002-1013. |
[32] | Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size.Plant J 58, 592-605. |
[33] | Li SY, Zhao BR, Yuan DY, Duan MJ, Qian Q, Tang L, Wang B, Liu XQ, Zhang J, Wang J, Sun JQ, Liu Z, Feng YQ, Yuan LP, Li CY (2013). Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.Proc Natl Acad Sci USA 110, 3167-3172. |
[34] | Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003). Control of tillering in rice.Nature 422, 618-621. |
[35] | Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth.Plant Cell 21, 1512-1525. |
[36] | Lindsay DL, Sawhney VK, Bonham-Smith PC (2006). Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral deve- lopment in Arabidopsis.Plant Sci 170, 1111-1117. |
[37] | Liu C, Teo ZW, Bi Y, Song SY, Xi WY, Yang XB, Yin ZC, Yu H (2013). A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice.Dev Cell 24, 612-622. |
[38] | Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992). Molecular characterization of the Arabidopsis floral hopmeotic gene Apetala 1.Nature 360, 273-277. |
[39] | Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T, Entwicklungsgenetik L (1998). Role of WUS- CHEL in regulating stem cell fate in the Arabidopsis shoot meristem.Cell 95, 805-815. |
[40] | Morita Y, Kyozuka J (2007). Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport.Plant Cell Physiol 48, 540-549. |
[41] | Nakagawa M, Shimamoto K, Kyozuka J (2002). Overex- pression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice.Plant J 29, 743-750. |
[42] | Oikawa T, Kyozuka J (2009). Two-step regulation of LAX PANICLE 1 protein accumulation in axillary meristem formation in rice.Plant Cell 21, 1095-1108. |
[43] | Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture.Proc Natl Acad Sci USA 105, 3646-3651. |
[44] | Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M (2009). A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos.Plant J 60, 227-241. |
[45] | Shen CJ, Bai YH, Wang SK, Zhang SN, Wu YR, Chen M, Jiang DA, Qi YH (2010). Expression profile of PIN, AUX/LAX and PGP auxin transpoter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277, 2954-2969. |
[46] | Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hi- rano HY (2004). The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leu- cine-rich repeat receptor kinase orthologous to Arab- idopsis CLAVATA1.Development 131, 5649-5657. |
[47] | Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y (2011). LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems.Plant Cell 23, 3276-3287. |
[48] | Wang L, Sun SY, Jin JY, Fu DB, Yang XF, Weng XS, Xu C, Li XH, Xiao JH, Zhang QF (2015). Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA 112, 15504-15509. |
[49] | Wang LM, Xie WB, Chen Y, Tang WJ, Yang JY, Ye RJ, Liu L, Lin YJ, Xu C, Xiao JH, Zhang QF (2010). A dynamic gene expression atlas covering the entire life cycle of rice.Plant J 61, 752-766. |
[50] | Weigel D, Alvarez JP, Smyth DR, Yanofsky MF, Meyer- owitz EM (1992). LEAFY controls floral meristem identity in Arabidopsis.Cell 69, 843-859. |
[51] | Wu YZ, Fu YC, Zhao SS, Gu P, Zhu ZF, Sun CQ, Tan LB (2015). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.Plant Biotechnol J 14, 377-386. |
[52] | Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice.Mol Plant 4, 319-330. |
[53] | Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY (2012). ABERRANT SPIKELET AND PANI- CLE1, encoding a TOPLESS-related transcriptional co- repressor, is involved in the regulation of meristem fate in rice.Plant J 70, 327-339. |
[54] | Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen RH, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J (2013). TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition.Proc Natl Acad Sci USA 110, 767-772. |
[55] | Yu HY, Murchie EH, González-Carranza ZH, Pyke KA, Roberts JA (2015). Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development.J Exp Bot 66, 1543-1552. |
[56] | Zhang SH, Hu WJ, Wang LP, Lin CF, Cong B, Sun CR, Luo D (2005). TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice.Plant Sci 168, 1393-1408. |
[57] | Zhang ZY, Li JJ, Yao GX, Zhang HL, Dou HJ, Shi HL, Sun XM, Li ZC (2011). Fine mapping and cloning of the Grain Number Per-Panicle Gene (Gnp4) on chromosome 4 in rice (Oryza sativa L.).J Integr Agr 10, 1825-1833. |
[58] | Zhao L, Tan LB, Zhu ZF, Xiao LT, Xie DX, Sun CQ (2015). PAY1 improves plant architecture and enhances grain yield in rice.Plant J 83, 528-536. |
[59] | Zhao YD (2008). The role of local biosynthesis of auxin and cytokinin in plant development.Curr Opin Plant Biol 11, 16-22. |
[60] | Zhao YD (2010). Auxin biosynthesis and its role in plant development.Annu Rev Plant Biol 61, 49-64. |
[61] | Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH (2009). Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics 183, 315-324. |
[62] | Zhu KM, Tang D, Yan CJ, Chi ZC, Yu HX, Chen JM, Liang JS, Gu MH, Cheng ZK (2010). ERECT PANICLE 2 encodes a novel protein that regulates panicle erectness in Indica rice.Genetics 184, 343-350. |
[63] | Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003). Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L).BMC Plant Biol 3, 6. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||