1 |
种康, 王台, 钱前, 王小菁, 左建儒, 顾红雅, 姜里文, 陈之端, 白永飞, 杨淑华, 孔宏智, 陈凡, 萧浪涛 (2015). 2014年中国植物科学若干领域重要研究进展. 植物学报 50, 412-459.
|
2 |
康菊清 (2010). 中国野生拟南芥种群冷胁迫响应的分化及其分子机制. 博士论文. 北京: 北京大学. pp. 7.
|
3 |
邢光南, 赵团结, 盖钧镒 (2008). 关于Mapmaker/Exp遗传作图中标记分群和排序操作技术的讨论. 作物学报 34, 217-223.
|
4 |
张艺能, 周玉萍, 陈琼华, 黄小玲, 田长恩 (2014). 拟南芥开花时间调控的分子基础. 植物学报 49, 469-482.
|
5 |
Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M (2009). What has natural variation taught us about plant development, physiology, and adaptation?Plant Cell 21, 1877-1896.
|
6 |
Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn- de Vries H, Koornneef M (2003). Analysis of natural allelic variation at seed dormancy loci of Arabidopsis tha- liana.Genetics 164, 711-729.
|
7 |
Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998). Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana.Genetics 149, 749-764.
|
8 |
Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapate JM (2005). Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.Plant Physiol 139, 1304-1312.
|
9 |
Alonso-Blanco C, Koornneef M (2000). Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics.Trends Plant Sci 5, 22-29.
|
10 |
Alonso-Blanco C, Koornneef M, van Ooijen JW (2006). QTL analysis.Methods Mol Biol 323, 79-99.
|
11 |
Cheo TY, Lu L, Yang G (2001). Brassicaceae. In: Wu ZY, Raven PH, eds. Flora of China. Beijing, China and St. Louis, USA: Science Press and Missouri Botanical Garden Press. pp. 120-121.
|
12 |
Collard B, Jahufer M, Brouwer J, Pang E (2005). An introduction to markers, quantitative trait loci (QTL) map- ping and marker-assisted selection for crop improvement: the basic concepts.Euphytica 142, 169-196.
|
13 |
He F, Kang DM, Ren YF, Qu LJ, Zhen Y, Gu HY (2007). Genetic diversity of the natural populations of Arabidopsis thaliana in China.Heredity 99, 423-431.
|
14 |
He F, Kang J, Zhou X, Su Z, Qu L, Gu H (2008). Variation at the transcriptional level among Chinese natural popu- lations of Arabidopsis thaliana in response to cold stress.Chin Sci Bull 53, 2989-2999.
|
15 |
Hou X, Li L, Peng Z, Wei B, Tang S, Ding M, Liu J, Zhang F, Zhao Y, Gu H, Qu LJ (2010). A platform of high- density INDEL/CAPS markers for map-based cloning in Arabidopsis.Plant J 63, 880-888.
|
16 |
Kang JQ, Zhang HT, Sun TS, Shi YH, Wang JQ, Zhang BC, Wang ZH, Zhou YH, Gu HY (2013). Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Ara- bidopsis thaliana populations along the Yangtze River in China.New Phytol 199, 1069-1080.
|
17 |
Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004). Naturally occurring genetic variation in Arabidopsis tha- liana.Annu Rev Plant Biol 55, 141-172.
|
18 |
Mitchell-Olds T, Willis JH, Goldstein DB (2007). Which evolutionary processes influence natural genetic variation for phenotypic traits?Nat Rev Genet 8, 845-856.
|
19 |
Weigel D (2012). Natural variation in Arabidopsis: from molecular genetics to ecological genomics.Plant Physiol 158, 2-22.
|
20 |
Weigel D, Nordborg M (2005). Natural variation in Ara- bidopsis. How do we find the causal genes? Plant Physiol 138, 567-568.
|
21 |
Yin P, Kang J, He F, Qu LJ, Gu H (2010). The origin of populations of Arabidopsis thaliana in China, based on the chloroplast DNA sequences.BMC Plant Biol 10, 22.
|