Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (4): 455-463.doi: 10.11983/CBB19044


• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Antifungal Activity and Mechanisms of Natamycin Against Colletotrichum gloeosporioides in Postharvest Mango Fruit

Liu Jiayi1,Wang Jiaxin1,Song Haichao2,Zhang Zhengke1,Xu Xiangbin1,Ji Xuncong3,*(),Shi Xuequn1,*()   

  1. 1 College of Food Science and Technology, Hainan University, Haikou 570228, China
    2 Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
    3 Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China
  • Received:2019-03-08 Accepted:2019-05-06 Online:2020-01-08 Published:2019-07-01
  • Contact: Ji Xuncong,Shi Xuequn;


In this study, we examined the inhibitory effects of natamycin at different concentrations on the conidial germination and mycelial growth of Colletotrichum gloeosporioides in vitro as well as the controlled effect of natamycin on postharvest anthracnose of mango (Mangifera indica) fruit inoculated with C. gloeosporioides. To further explore the underlying antifungal mechanism, we analyzed the membrane permeability, soluble protein content, changes in cell membrane integrity, intracellular reactive oxygen species (ROS) level and mitochondrial distribution in C. gloeosporioides after natamycin treatment. Natamycin at 3 mg∙L -1 effectively suppressed the conidial germination, germ tube elongation and mycelial growth of C. gloeosporioides. Also, 80 mg∙L -1natamycin significantly inhibited the expansion of anthracnose lesions in mango fruit during storage. Furthermore, natamycin treatment increased the relative permeability and soluble protein content in the cell membrane of C. gloeosporioides. After 8h treatment with natamycin 2 mg∙L -1, the staining rate of damaged cell membranes in C. gloeosporioides was 33.6% and 13.9% in the control. The staining rate of intracellular ROS reached 46.9% in treated conidia, which was 39.7% higher than that of the control. Natamycin treatment caused heterogeneous distribution of intracellular mitochondria along with weaker fluorescence as compared with the control. In summary, natamycin can destroy the cell membrane of C. gloeosporioides, induce ROS accumulation and reduce mitochondrial activity, thus interfering in the normal physiological activity of C. gloeosporioides and affecting its metabolic activities.

Key words: natamycin, mango, Colletotrichum gloeosporioides, antifungal mechanism

Figure 1

Effect of natamycin on conidial germination and germ tube elongation of Colletotrichum gloeosporioides (A) Micrograph of conidial germination (Bars=50 μm); (B) Conidial germination rate; (C) Germ tube length. Treatments followed by different lowercase letters are statistically different by the Duncan’s multiple range test (P<0.05)."

Figure 2

Effect of natamycin on colony growth of Colletotrichum gloeosporioides (A) Colony morphology (Bar=15 mm); (B) Colony diameter. Treatments followed by different lowercase letters are statistically different by the Duncan’s multiple range test (P<0.05)."

Figure 3

Effect of natamycin on anthracnose in mango fruit (A) Symptoms of anthracnose in fruit (Bar=8 mm); (B) Lesion diameter of anthracnose. Treatments followed by different lowercase letters are statistically different by the Duncan’s multiple range test (P<0.05)."

Figure 4

Effect of natamycin on cell membrane permeability and soluble protein content of Colletotrichum gloeosporioides (A) Relative permeability of cell membrane; (B) Soluble protein content"

Figure 5

Effect of natamycin on membrane integrity of Colletotrichum gloeosporioides conidia (A) Propidium iodide (PI) staining under fluorescence microscope, conidia with damaged plasma membranes showed red fluorescence (Bars=50 μm); (B) PI staining rate. Treatments followed by different lowercase letters are statistically different by the Duncan’s multiple range test (P<0.05)."

Figure 6

Effect of natamycin on reactive oxygen species (ROS) content of Colletotrichum gloeosporioides (A) DCFH-DA staining under fluorescence microscope, conidia with intracellular ROS induction exhibit green fluorescence (Bars=50 μm); (B) DCFH-DA staining rate. Treatments followed by different lowercase letters are statistically different by the Duncan’s multiple range test (P<0.05)."

Figure 7

Effect of natamycin on the distribution of mitochondria of Colletotrichum gloeosporioides conidia The red fluorescence represented the mitochondrial aggregation area (Bars=5 μm)."

[1] 岑春艺, 黄正学, 李善登, 韦继光, 李良波, 黄荣韶 ( 2016). 西番莲提取物对三七炭疽病菌和黑斑病菌的抑制作用. 湖北农业科学 55, 912-915.
[2] 郭萌萌, 李志文, 张平, 农绍庄, 刘莉, 刘翔 ( 2013). 纳他霉素对葡萄采后灰霉病菌的毒力及其防腐保鲜效果. 食品与发酵工业 39(8), 226-232.
[3] 呼玉侠, 孙远功, 鲁来政, 李长锁 ( 2006). 纳他霉素在草莓防腐中的应用. 食品研究与开发 27(8), 170-172.
[4] 黄勤知, 余莎, 何红, 卢乃会 ( 2013). 红树内生细菌AiL3抗菌蛋白对杧果炭疽菌的抑制作用. 果树学报 30, 1016-1022.
[5] 姜爱丽, 胡文忠, 李慧, 田密霞, 范圣第 ( 2009). 纳他霉素处理对采后甜樱桃生理代谢及品质的影响. 农业工程学报 25, 351-356.
[6] 景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
[7] 石志琦, 沈寿国, 徐朗莱, 范永坚 ( 2004). 蛇床子素对植物病原真菌抑制机制的初步研究. 农药学学报 6(4), 28-32.
[8] 孙远功, 呼玉侠, 冯昕 ( 2006). 纳他霉素在柑桔防腐保鲜中的应用. 食品研究与开发 27(7), 190-192.
[9] 唐群勇 ( 2011). Fengycin对Rhizopus stolonifer作用机理研究. 硕士论文. 南京: 南京农业大学. pp. 1-68.
[10] Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS ( 2005). Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109, 150-158.
[11] Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J ( 2016). Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 100, 61-78.
[12] Aparicio JF, Mendes MV, Anton N, Recio E, Martin JF ( 2004). Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11, 1643-1656.
[13] Arroyo-López FN, Bautista-Gallego J, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A ( 2012). Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. Int J Food Microbiol 155, 257-262.
[14] Avery SV ( 2011). Molecular targets of oxidative stress. Biochem 434, 201-210.
[15] Chan DC ( 2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
[16] Circu ML, Aw TY ( 2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48, 749-762.
[17] Fajardo P, Martins JT, Fuciños C, Pastrana L, Teixeira JA, Vicente AA ( 2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of saloio cheese. J Food Eng 101, 349-356.
[18] Haack SE, Ivors KL, Holmes GJ, Förster H, Adaskaveg JE ( 2018). Natamycin, a new biofungicide for managing crown rot of strawberry caused by QoI-resistant Colletotrichum acutatum. Plant Dis 102, 1687-1695.
[19] He C, Zhang ZQ, Li BQ, Xu Y, Tian SP ( 2019). Effect of natamycin on Botrytis cinerea and Penicillium expansum-postharvest pathogens of grape berries and jujube fruit. Postharvest Biol Technol 151, 134-141.
[20] Hondrodimou O, Kourkoutas Y, Panagou EZ ( 2011). Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol 28, 621-627.
[21] Hu MJ, Yang DP, Huber DJ, Jiang YM, Li M, Gao ZY, Zhang ZK ( 2014). Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment. Postharvest Biol Technol 97, 115-122.
[22] Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ ( 2007). Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7, 106-118.
[23] Jongsri P, Rojsitthisak P, Wangsomboondee T, Seraypheap K ( 2017). Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of ‘Nam Dok Mai’ mango after harvest. Sci Hortic 224, 180-187.
[24] Kefialew Y, Ayalew A ( 2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango( Mangifera indica). Postharvest Biol Technol 50, 8-11.
[25] Lai TF, Li BQ, Qin GZ, Tian SP ( 2011). Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum. Curr Microbiol 62, 229-234.
[26] Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P ( 2012). Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduction 2012, 329635.
[27] Mehyar GF, Al Nabulsi AA, Saleh M, Olaimat AN, Holley RA ( 2017). Effects of chitosan coating containingly- sozyme or natamycin on shelf-life, microbial quality, and sensory properties of Halloumi cheese brined in normal and reduced salt solutions. J Food Process Pres 42, e13324.
[28] Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER ( 2018). Effects of essential oil vapour treatment on the postharvest disease control and different defence responses in two mango (Mangifera indica L.) cultivars. Food Bioprocess Tech 10, 1131-1141.
[29] Pipek P, Rohlík BA, Lojková A, Staruch L ( 2010). Suppression of mould growth on dry sausages. Czech Food Sci 28, 258-263.
[30] Shi XQ, Li BQ, Qin GZ, Tian SP ( 2012). Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol Technol 67, 138-143.
[31] Sivakumar D, Jiang Y, Yahia EM ( 2011). Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res Int 44, 1254-1263.
[32] te Welscher YM, Jones L, van Leeuwen MR, Dijksterhuis J, de Kruijff B, Eitzen G, Breukink E ( 2010). Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Chemother 54, 2618-2625.
[33] Van Leeuwen MR, Golovina EA, Dijksterhuis J ( 2009). The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor. J Appl Microbiol 106, 1908-1918.
[34] Xu XB, Tian SP ( 2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 49, 379-385.
[1] Zhu Zhu;Xianghong Meng;Shiping Tian*. Effect of Preharvest Oxalic Acid Sprays on Calcium Content and Distribution in Mango Fruit Cells [J]. Chinese Bulletin of Botany, 2010, 45(01): 23-28.
Full text



[1] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chinese Bulletin of Botany, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chinese Bulletin of Botany, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chinese Bulletin of Botany, 2004, 21(03): 360 -366 .
[5] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chinese Bulletin of Botany, 2000, 17(专辑): 261 .
[7] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 8 -9 .
[8] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chinese Bulletin of Botany, 2009, 44(03): 371 -378 .
[9] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chinese Bulletin of Botany, 2015, 50(2): 171 -179 .