Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (5): 590-597.doi: 10.11983/CBB16137

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Evolution of Defender Against Apoptotic Death (DAD) Genes in Seed Plants

Ying Bao*(), Yuqin Mei   

  1. School of Life Sciences, Qufu Normal University, Qufu 273165, China
  • Received:2016-06-21 Accepted:2017-01-10 Online:2017-07-10 Published:2017-09-01
  • Contact: Ying Bao E-mail:baoyingus@126.com

Abstract:

Defender against apoptotic death (DAD) is a highly conserved cellular apoptosis gene and plays an important role in seed plant growth and development. To fully understand the evolutionary pattern of the DAD gene in seed plants, based on the whole genome data of 31 plants, we analyzed copy number, structure, chromosome location of the DAD genes by using bioinformatics. In addition, along with transcriptome data for seven gymnosperms, we discuss the evolutionary trend of the genes in seed plants. The DAD gene is a low-copy gene with only 1-3 copies in different seed plants, and the length of different DAD protein varies from 108 to 170 aa. Phylogenetic and syntonic analyses further showed that the evolution of the DAD gene in these seed species has a lineage-specific characteristic. Random and block duplication and subsequent gene loss were possibly important ways to maintain the low-copy number of DAD genes in seed plant genomes.

Key words: chromosome location, DAD, duplication pattern, whole genome, gene structure

Table 1

Detailed information of DAD homologous genes of 38 plants"

Taxa Gene ID Strand Chromosome Duplication
pattern
Gene structure Amino acid (aa)
Intron Exon
Angiosperm
Dicot
Arabidopsis lyrata AL1G33450 _ Scaffold_1 Block 4 5 115
AL4G20890 + Scaffold_4 Block 4 5 116
A. thaliana AT1G32210 _ Chr01 Block 4 5 115
AT2G35520 + Chr02 Block 4 5 116
Brassica rapa BR05G20160 + ChrA05 Block 4 5 115
BR09G26700a + ChrA09 Block 6 7 201 (88) d
Capsella rubella CRU_001G29110 _ Scaffold_1 Block 4 5 115
CRU_004G16620 + Scaffold_4 Block 4 5 115
Citrullus lanatus CL10G00840 + Chr10 4 5 115
Cucumis melo CM00021G01290 _ Scaffold00021 4 5 115
Eucalyptus grandis EG0008G05930 + Scaffold_8 4 5 115
Fragaria vesca FV2G07670 + LG2 4 5 124
Gossypium raimondii GR03G18540 + Chr03 Block 4 5 117
GR08G22400 _ Chr08 Block 4 5 117
Malus domestica MD05G025840 + Chr05 Random 4 5 119
MD10G000120 + Chr10 Random 4 5 119
Manihot esculenta ME04430G00010 + Scaffold04430 Random 4 5 115
ME07304G00010 + Scaffold07304 Random 4 5 115
Populus trichocarpa PT01G13680 _ Chr01 Block 4 5 115
PT03G09680 + Chr03 Block 4 5 115
Prunus persica PPE_004G33460 _ Scaffold_4 Block 4 5 119
PPE_008G00790 _ Scaffold_8 Block 4 5 119
Ricinus communis RC29634G00390 + 29634 Random 4 5 115
RC30068G01440 + 30068 Random 4 5 113
Solanum lycopersicum SL08G076460 + Chr08 4 5 116
S. tuberosum ST08G008690 _ Chr08 Block 4 5 116
ST08G021840 _ Chr08 Block 4 5 116
Thellungiella parvula TP1G27890 _ Chr1-1 4 5 115
Theobroma cacao TC0003G30500 + Scaffold_3 4 5 116
Vitis vinifera VV02G01690 + Chr02 4 5 115
Moncot
Brachypodium distachyon BD1G50180 + Chr01 4 5 114
Hordeum vulgare HV1571041G00020 _ Contig_1571041 Random 4 5 114
HV44460G00030 + Contig_44460 Random 4 5 114
Oryza sativa OS04G32550 + Chr04 4 5 114
Setaria italica SI004G00880 + Scaffold_4 4 5 114
Sorghum bicolor SB10G001000 + Chr10 4 5 114
Zea mays ZM09G06480 _ Chr09 4 5 114
Musa acuminata MA07G17850 _ Chr07 Block 4 5 115
MA10G06540b _ Chr10 Block - 1 48 (22) d
MA11G08020 + Chr11 Block 4 5 170
Basal taxon
Amborella trichopoda ATR_00025G00360 + Scaffold00025 4 5 121
Gymnosperm
Taxa
Ginkgo bilobac
Gnetum montanumc
Gene ID Strand Chromosome Duplication
pattern
Gene structure Amino acid (aa)
Intron Exon
Picea abies GBI00024938 + 6973 - - 123
GMO00028447 _ GTHK-0066600 - - 113
PAB00021420a _ MA_128105 Random 5 6 162 (67) d
P. glaucac PAB00041636 _ MA_42912 Random 4 5 115
PAB00057214b + MA_8328929 Random 1 2 50 (45) d
PGL00020840 + PUT-39823
PUT-39823
- - 115
P. sitchensisc PGL00013662 + PUT-23726
PUT-23726
- - 115
PGL00010558 + PUT-16509 - - 115
Pinus pinasterc PSI00016644 + PUT-531483 - - 148
PSI00008404 + PUT-21837 - - 115
Pi. sylvestrisc PPI00061658 _ Unigene30039 - - 115
PPI00006515 _ Cotig25413 - - 115
PSY00006071 _ Isotig31028 - - 115
Pi. taeda PSY00026421 + Isotig68699 - - 115
PSY00004335 + isotig24244 - - 115
PTA00003657 _ Scaffold464 Random 4 5 115
Pseudotsuga menziesii c PTA00022345b + Scaffold214279 Random 2 3 86 (72) d
PTA00022344b + Scaffold214279 Random 1 2 44 (44) d
Moss
Physcomitrella patens
PME00105748 + Psme_598296871 - - 146
PME00105747 + Psme_598296869 - - 115
Alga
Chlamydomonas reinhardtii
PP00045G01180 + Scaffold_45 4 5 131
PP00456G00180 - Scaffold_456 4 5 114

Figure 1

Maximum likelihood tree of DAD genes based on 58 amino acid sequences of 38 plantsNumbers near branches represent bootstrap values (>50%) of the maximum likelihood analysis and posterior rate of the Bayesian analysis. The gene loci in this figure are the same as those listed in Table 1."

[1] 龚文芳, 喻树迅, 宋美珍, 范术丽, 庞朝友, 肖水平 (2010). 棉花抗细胞凋亡基因GhDAD1的克隆、定位及表达分析. 中国农业科学 43, 3713-3723.
[2] 贾志蓉, 李丹, 吕应堂 (2004). 拟南芥AtDAD1超量表达植株对H2O2抗性的研究. 武汉植物学研究 22, 373-379.
[3] 杨舒雅, 史娟, 马斌芳, 赵洁, 金晓航 (2012). 抗细胞凋亡因子DAD1的研究进展. 生理科学进展 43, 315-318.
[4] Apte SS, Mattei MG, Seldin MF, Olsen BR (1995). The highly conserved defender against the death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett 363, 304-306.
[5] Blanc G, Hokamp K, Wolfe KH (2003). A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome.Genome Res 13, 137-144.
[6] Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004). Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase- like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death.J Biol Chem 279, 779-787.
[7] Gallois P, Makishima T, Hecht V, Despres B, Laudié M, Nishimoto T, Cooke R (1997). An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant.Plant J 11, 1325-1331.
[8] Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Mol Biol Evol 27, 221-224.
[9] Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Syst Biol 59, 307-321.
[10] Kelleher DJ, Gilmore R (1997). DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase.Proc Natl Acad Sci USA 94, 4994-4999.
[11] Kerr JFR, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics.Br J Cancer 26, 239-257.
[12] Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS (2002). Patterns of positive selection in the com- plete NBS-LRR gene family of Arabidopsis thaliana.Genome Res 12, 1305-1315.
[13] Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993). Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells.Mol Cell Biol 13, 6367-6374.
[14] Raff M (1998). Cell suicide for beginners.Nature 396, 119-122.
[15] Roboti P, High S (2012). The oligosaccharyltransferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation.J Cell Sci 125, 3474-3484.
[16] Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics 19, 1572-1574.
[17] Schwartzman RA, Cidlowski JA (1993). Apoptosis: the biochemistry and molecular biology of programmed cell death.Endocr Rev 14, 133-151.
[18] Williams GT, Smith CA (1993). Molecular regulation of apoptosis: genetic controls on cell death.Cell 7, 777-779.
[19] Wortman JR, Haas BJ, Hannick LI, Smith RK, Maiti R, Ronning CM, Chan AP, Yu CH, Ayele M, Whitelaw CA, White OR, Town CD (2003). Annotation of the Arabidopsis genome.Plant Physiol 132, 461-468.
[20] Ye CY, Li T, Yin H, Weston DJ, Tuskan GA, Tschaplinski TJ, Yang X (2012). Evolutionary analyses of non-family genes in plants.Plant J 73, 788-797.
[1] Hao Wang, Rui Zhang, Jiao Zhang, Hui Shen, Xiling Dai, Yuehong Yan. De novo transcriptome assembly reveals the whole genome duplication events of Didymochlaena trancatula [J]. Biodiv Sci, 2019, 27(11): 1221-1227.
[2] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[3] Gao Huhu, Zhang Yunxiao, Hu Shengwu, Guo Yuan. Genome-wide Survey and Phylogenetic Analysis of MADS-box Gene Family in Brassica napus [J]. Chin Bull Bot, 2017, 52(6): 699-712.
[4] Yuanyong Gong, Shuqiao Guo, Hongmei Shu, Wanchao Ni, Paerhati·Maimaiti, Xinlian Shen, Peng Xu, Xianggui Zhang, Qi Guo. Analysis of Molecular Evolution and Gene Structure of EPSPS Protein in Plant Shikimate Pathway [J]. Chin Bull Bot, 2015, 50(3): 295-309.
[5] Chenlu Xu, Xiaomei Sun, Shougong Zhang. Characteristics of Conifer Genome and Recent Advances in Conifer Sequence Resources Mining [J]. Chin Bull Bot, 2013, 48(6): 684-693.
[6] Fangzheng Li, Suxin Yang, Chunxia Wu, Haichao Wei, Ruilian Qu, Xianzhong Feng. Structure and Expression Analysis of KNOX Gene Family in Soybean [J]. Chin Bull Bot, 2012, 47(3): 236-247.
[7] Xiaofeng Dai;Ling Xiao;Yuhua Wu;Gang Wu;Changming Lu. An Overview of Plant Fatty Acid Desaturases and the Coding Genes [J]. Chin Bull Bot, 2007, 24(01): 105-113.
[8] HUANG Ji HOU Fu-Yun WANG Jian-Fei ZHANG Hong-Sheng. Evolution Styles of Glucose-6-Phosphate Dehydrogenase and 6-Phosphaogluconate Dehydrogenase Genes in Higher Plants [J]. Chin Bull Bot, 2005, 22(02): 138-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Xiao-hua Cai Zhu-ping. Effects of S-07, PP333 and Triadimefon on Peroxidaseisoentyme of Rice Seedling[J]. Chin Bull Bot, 1995, 12(专辑3): 109 -112 .
[2] . [J]. Chin Bull Bot, 1994, 11(专辑): 13 .
[3] Xiaomin Yu;Xingguo Lan;Yuhua Li. The Ub/26S Proteasome Pathway and Self-incompatible Responses in Flowering Plants[J]. Chin Bull Bot, 2006, 23(2): 197 -206 .
[4] WANG Ling-Li LIU Wen-Zhe. Contents of Camptothecin in Camptotheca acuminata from Different Provenances[J]. Chin Bull Bot, 2005, 22(05): 584 -589 .
[5] Dai Yun-ling and Xu Chun-hui. Advances in Research on Protein Components of Oxygen-evolving Complex[J]. Chin Bull Bot, 1992, 9(03): 1 -16 .
[6] . Advances in Research on Photosynthesis of Submerged Macrophytes[J]. Chin Bull Bot, 2005, 22(增刊): 128 -138 .
[7] Shaobin Zhang;Guoqin Liu. Research Advances in Plant Actin Isoforms[J]. Chin Bull Bot, 2006, 23(3): 242 -248 .
[8] BU Ren-Cang, CHANG Yu, HU Yuan-Man, LI Xiu-Zhen, HE Hong-Shi. SENSITIVITY OF CONIFEROUS TREES TO ENVIRONMENTAL FACTORS AT DIFFERENT SCALES IN THE SMALL XING’AN MOUNTAINS, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 80 -87 .
[9] MA Li-Hui, WU Pu-Te, and WANG You-Ke. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chin J Plan Ecolo, 2012, 36(4): 292 -301 .
[10] PAN Yu-De, Melillo J. M., Kicklighter D. W., XIAO Xiang-Ming, McGuire A. D.. Modeling Structural and Functional Responses of Terrestria Ecosystems in China to Changes in Climate and Atmospheric CO2[J]. Chin J Plan Ecolo, 2001, 25(2): 175 -189 .