Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (1): 51-58.doi: 10.11983/CBB17015

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Evaluation on Alkaline Salt Tolerance of Grape F1 Generation Hybrids

Shuhua Guo, Heng Zhai, Ning Han, Yuanpeng Du*()   

  1. State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
  • Received:2017-01-19 Accepted:2017-03-06 Online:2018-08-10 Published:2018-01-01
  • Contact: Yuanpeng Du E-mail:duyuanpeng001@163.com

Abstract:

We evaluated alkaline salt tolerance in four hybrids of Vitis amurensis cv. ‘Zuoshan1’ × ‘SO4’ (A11, A14, A15, A17) and 2 hybrids of V. amurensis cv. ‘Zuoshan1’ × ‘101-1’ (B24, B26) to assess the physiological response of these hybrids and identify the strains with high alkaline salt tolerance as candidate rootstocks for saline-alkali land. Rootstock 1103P and V. vinifera cv. ‘Crimson Seedless’ were conducted as double controls. The potted grapevines were irrigated with 100 mmol∙L-1 NaHCO3 (pH8.62). Comprehensive assessment was based on principal component analysis and correlation analysis. The plant height, root activity, leaf and plant water content were reduced under NaHCO3 treatment, whereas the electrical conductivity, MDA content, soluble sugar and free proline content were increased. The plant height of A17 was minimally affected. The plant water content was slightly reduced in Crimson, A17 and B24. The difference in root activity of A14 and A15 was not significant, compared with that of their own controls, and the difference in electric conductivity of 1103P, B24, A14, B26, Crimson and A15 was not significant, compared with that of their own controls. MDA content for B26, A17 and A15 did not differ from that of their own controls. Soluble sugar and free proline content of A15 increased the most after NaHCO3 treatment. According to the D value, A14, A15, B24 had strong alkali resistance; Crimson, A11 and A17 had medium alkali resistance; and 1103P and B26 had weak resistance.

Key words: grape, hybrid rootstock, alkali salt tolerance

Figure 1

The growth of grape seedlings after alkaline salt treatment(A1)-(H1) Represent the growth of the controls of A11, A14, A15, A17, B24, B26, Crimson and 1103P; (A2)-(H2) Represent the growth of A11, A14, A15, A17, B24, B26, Crimson, and 1103P after 8-day NaHCO3 treatment."

Figure 2

The effect of alkaline salt stress on the plant growth of different grape strains(A) Plant height; (B) Leaf water content; (C) Plant water content. Different lowercase letters indicate significant differences at P<0.05 level."

Figure 3

The effect of alkaline salt stress on the root activity of different grape strainsDifferent lowercase letters indicate significant differences at P<0.05 level."

Figure 4

The effect of alkaline salt stress on the leaf malondial- dehyde (MDA) content (A) and electrical conductivity (B) of different grape strains Different lowercase letters indicate significant differences at P<0.05 level."

Figure 5

The effect of alkaline salt stress on the leaf soluble sugar (A) and free proline content (B) of different grape strains Different lowercase letters indicate significant differences at P<0.05 level."

Table 1

Alkali resistance coefficient of each grape strain under 100 mmol∙L-1 NaHCO3 treatment"

Strain X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
A11 0.17 1.48 1.84 0.35 0.92 1.07 1.01 0.94 0.93 0.92 1.51 1.63
A14 0.32 1.93 1.40 0.75 0.89 1.09 0.79 0.81 0.97 0.91 1.85 1.99
A15 0.60 1.29 1.53 0.72 0.97 1.06 1.01 0.92 0.93 0.91 1.97 2.34
A17 0.17 1.22 1.46 0.27 0.84 1.00 1.03 0.93 0.92 0.94 1.62 1.11
B24 0.19 1.69 1.21 0.31 0.99 1.06 1.05 0.93 0.93 0.94 1.75 1.91
B26 0.43 1.06 1.41 0.57 0.72 0.68 0.73 1.00 0.98 0.94 1.13 2.00
Crimson 0.36 1.59 1.42 0.40 0.96 1.11 1.14 0.95 0.96 0.99 1.67 1.43
1103P 0.34 1.31 1.20 0.57 0.85 0.86 0.92 0.99 0.93 0.91 1.93 2.00

Table 2

Correlation matrix of every single index under 100 mmol∙L-1 NaHCO3 stress"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X1 1
X2 -0.293 1
X3 -0.08 -0.099 1
X4 0.769* 0.099 -0.109 1
X5 -0.047 0.6 0.069 -0.138 1
X6 -0.227 0.715* 0.272 -0.155 0.877** 1
X7 -0.241 -0.139 0.128 -0.607 0.749* 0.667 1
X8 0.089 -0.774* -0.109 -0.351 -0.375 -0.651 0.098 1
X9 0.337 0.148 -0.101 0.463 -0.439 -0.347 -0.621 -0.121 1
X10 -0.137 0.014 -0.097 -0.529 0.11 0.116 0.488 0.285 0.262 1
X11 0.18 0.445 -0.287 0.318 0.658 0.586 0.358 -0.4443 -0.471 -0.359 1
X12 0.684 0.035 -0.206 0.779* 0.065 -0.219 -0.458 -0.072 -0.215 -0.581 0.285 1

Table 3

Comprehensive index value, D value and comprehensive evaluation of different grape strains under 100 mmol∙L-1 NaHCO3 stress"

Index A11 A14 A15 A17 B24 B26 Crimson 1103P
CI1 1.78 1.65 1.43 1.79 1.86 0.72 1.92 1.36
CI2 1.49 2.34 2.34 1.17 1.84 1.53 1.60 1.96
CI3 -0.02 -0.08 0.39 0.04 0.07 0.13 0.02 0.30
CI4 0.63 0.84 0.90 0.72 0.91 0.79 0.89 0.91
CI5 1.20 0.96 1.20 1.00 0.86 1.11 1.06 0.89
D value 2.65 2.89 2.79 2.52 2.91 1.65 2.66 2.51
Alkali resistance evaluation Middle Strong Strong Middle Strong Weak Middle Weak
[1] 陈少裕 (1991). 膜脂过氧化对植物细胞的伤害. 植物生理学通讯 27, 84-90.
[2] 樊秀彩, 张亚冰, 刘崇怀, 潘兴, 郭景南, 李民, 王姣 (2007). NaCl胁迫对葡萄幼苗叶片有机渗透调节物质和膜脂过氧化的影响. 果树学报 24, 765-769.
[3] 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪 (2016). 亚麻响应盐、碱胁迫的生理特征. 植物生态学报 40, 69-79.
[4] 马凯, 汪良驹, 王业遴, 姜卫兵, 顾平 (1997). 十八种果树盐害症状与耐盐性研究. 果树科学 14, 1-5.
[5] 秦红艳, 沈育杰, 艾军, 李昌禹, 王振兴, 杨义明, 范书田 (2010). 盐胁迫对不同葡萄品种叶片中叶绿素荧光参数的影响. 中外葡萄与葡萄酒 (5), 35-38.
[6] 石德成 (1992). 胁迫下植物的胁变反应及数学分析. 植物学报 34, 386-393.
[7] 石德成, 盛艳敏, 赵可夫 (1998). 不同盐浓度的混合盐对羊草苗的胁迫效应. 植物学报 40, 1136-1142.
[8] 王海英, 孙建设, 王旭静 (2000). 果树耐盐性研究进展. 河北农业大学学报 23(2), 54-58.
[9] 王军, 周美学, 许如根, 吕超, 黄祖六 (2007). 大麦耐湿性鉴定指标和评价方法研究. 中国农业科学 40, 2145-2152.
[10] 武维华 (2008).植物生理学(第2版). 北京: 科学技术出版社. pp. 448-449.
[11] 许兰杰, 梁慧珍, 余永亮, 杨红旗, 董薇, 牛永光, 芦海灵, 曹杰, 吕爱淑 (2016). 盐碱胁迫下芝麻种子萌发过程中营养物质的动态变化规律. 河南农业科学 45(4), 43-48.
[12] 张宪政 (1989). 植物生理学实验技术. 沈阳: 辽宁科学技术出版社. pp. 329-330.
[13] 赵世杰, 史国安, 董新纯 (2002).植物生理学实验指导. 北京: 中国农业科学技术出版社. pp. 45-48, 55-57, 84-85, 130-133, 142-143.
[14] 周广生, 梅方竹, 周竹青, 朱旭彤 (2003). 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学 36, 1378-1382.
[15] 周万海, 师希雄, 曹孜义 (2009). 盐胁迫对不同葡萄砧木苗期生长特性的影响. 甘肃农业大学学报 44, 60-63.
[16] Carroll B (2006). Rootstocks for grape production. In: Division of Agricultural Sciences and Natural Resources. Stillwater: Oklahoma State University. HLA-6253-4.
[17] Mehanna HT, Fayed TA, Rashedy AA (2010). Response of two grapevine rootstocks to some salt tolerance treatments under saline water conditions.J Hortic Sci Ornament Plants 2, 93-106.
[18] Verma SK, Singh SK, Krishna H (2010). The effect of certain rootstocks on the grape cultivar ‘Pusa Urvashi’ ( Vitis vinifera L.). Int J Fruit Sci 10, 16-28.
[19] Yang CW, Shi DC, Wang DL (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca(Bge.). Plant Growth Regul 56, 179-190.
[1] Wang Xiaolong, Liu Fengzhi, Shi Xiangbin, Wang Xiaodi, Ji Xiaohao, Wang Zhiqiang, Wang Baoliang, Zheng Xiaocui, Wang Haibo. Evolution and Expression of NCED Family Genes in Vitis vinifera [J]. Chin Bull Bot, 2019, 54(4): 474-485.
[2] Shuhua Guo, Yongjiang Sun, Yanjie Niu, Ning Han, Heng Zhai, Yuanpeng Du. Effect of Alkaline Salt Stress on Photosystem Activity of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(2): 196-202.
[3] Fu Qingqing, Sun Lulong, Zhai Heng, Du Yuanpeng. Salt Tolerant Evaluation of F1-generation Hybrids in Grape [J]. Chin Bull Bot, 2017, 52(6): 733-742.
[4] Lulong Sun, Wei Song, Yuanpeng Du, Heng Zhai. Application of Photochemical Reflectance Index in Comparing Frost Resistance of Grapevine Cultivars [J]. Chin Bull Bot, 2017, 52(5): 543-549.
[5] Lulong Sun, Qingwei Geng, Hao Xing, Yuanpeng Du, Heng Zhai. Effects of Buffered Cooling in Root Zone on Frost Injury in Grape Leaf [J]. Chin Bull Bot, 2017, 52(3): 290-296.
[6] Lulong Sun, Qingwei Geng, Hao Xing, Yuanpeng Du, Heng Zhai. Effect of Low Temperature Treatments in Root of Grapevine on PSII Activity in Leaves [J]. Chin Bull Bot, 2017, 52(2): 159-166.
[7] ;SHI Li-Li DONG Qiu-Hong WANG Shi-Ping②. Residue of Streptomycin in Berry and the Effect of Expanding Residue of Streptomycin in Berry and the Effect of Expanding [J]. Chin Bull Bot, 2004, 21(04): 437-443.
[8] WANG Li-Jun ZHAN Ji-Cheng HUANG Wei-Dong. Preliminary Study on Signal Transduction Related with Salicylic acid During Heat Acclimation to Young Grape Plants [J]. Chin Bull Bot, 2002, 19(06): 710-715.
[9] Zhang Da-peng, Jiang Hong-ying, Chen Xing-li, Lou Cheng-hou. Regulating Effects of Canopy light (PAR) interception and Distribution on Photosynthate [J]. Chin J Plan Ecolo, 1995, 19(4): 302-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[3] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[4] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[5] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[6] Yun Zihou;Liang Mingxia;Zhang Cunjie and Tan Zhiyi. The Determination of Trace Cytokinin in a Small Plant Sample by Gas Chromatography[J]. Chin Bull Bot, 1988, 5(01): 60 -63 .
[7] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[8] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .
[9] L Chao-Qun, SUN Shu-Cun. A REVIEW ON THE DISTRIBUTION PATTERNS OF CARBON DENSITY IN TERRESTRIAL ECOSYSTEMS[J]. Chin J Plan Ecolo, 2004, 28(5): 692 -703 .
[10] LONG Wen-Xing, DING Yi, ZANG Run-Guo, YANG Min, CHEN Shao-Wei. Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China[J]. Chin J Plan Ecolo, 2011, 35(2): 137 -146 .