Chin Bull Bot ›› 2015, Vol. 50 ›› Issue (2): 198-205.doi: 10.3724/SP.J.1259.2015.00198

• 研究报告 • Previous Articles     Next Articles

Genetic Analysis and Gene Mapping of a Rice Spreadingpanicle Mutant

Dan Liu, Jiayu Wang, Jin Liu, Dianrong Ma, Minghui Zhao, Wenfu Chen*   

  1. Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northeast Rice Biology, Genetics and Breeding of Ministry of Agriculture/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry ofEducation, Shenyang 110866, China
  • Received:2014-04-01 Accepted:2014-05-14 Online:2015-04-10 Published:2015-03-01
  • Contact: Liu Dan,Wang Jiayu,Chen Wenfu E-mail:wfchen5512@126.com
  • About author:

    ? These authors contributed equally to this paper

Abstract:

Rice is the most important crop in our country, and the panicle traits determine the yield and quality of rice. From recombinant inbred lines derived from a cross between Akihikari (japonica) and Qishanzhan (indica), a spreading- panicle mutant (sp) was found that had panicle branches extending outward, increased angle between primary branch and rachis and the panicle grew around this. As compared with the wild-type parent, sp showed significantly reduced panicle weight, grain weight per panicle, 1 000 grain weight, grain width and grain thickness, which implied that the sp gene participated in regulating panicle formation and glumous flower development. Genetic analysis showed that the sp phenotype was controlled by a single dominance nuclear gene. Primary mapping based on the F2 line between sp and 02428 showed that the sp gene was on the long arm of chromosome 4 and at a 62.9 kb region between markers E3 and RM17578. This information provides a basis for cloning this gene and functional mechanism analysis.

Figure 2

The genotype of rice sp distributing on the 12 chromosomes"

Figure 2

Phenotype of rice spreading panicle mutant and parents (A) Phenotype of the sp mutant (Bar=30 cm); (B) Panicle phenotype of sp and Akihikari at anthesis stage (Bar=5 cm); (C) Panicle phenotype of sp at late grain filling stage (Bar=5 cm); (D) Panicle phenotype of sp at ripening stage (Bar=5 cm)"

Figure 3

Scanning electron microscope (SEM) observation of rice sp and parents at ripening stage (A) sp; (B) Akihikari; (C) Qishanzhan. Bar=1 mm"

Table 1

Main agronomic traits of the rice sp mutant and the parents (means±SD)"

Characters sp Akihikari
Panicle weight (g) 2.75±0.34** 3.43±0.14
Grain weight per panicle (g) 2.60±0.31** 3.31±0.13
1 000 grain weight (g) 20.06±0.12** 22.13±0.41
Grain length (mm) 6.98±0.28 7.34±0.24
Grain width (mm) 2.90±0.15** 3.48±0.10
Grain thickness (mm) 2.03±0.04** 2.28±0.10
Plant height (cm) 145.40±2.86** 114.77±4.28
Spikelet number per panicle (ea) 146.80±17.09 160.80±13.61
Primary branch number (ea) 13.60±0.89 12.80±0.45
Second branch number (ea) 21.60±4.28 25.80±2.68

Table 2

Genetic analysis of rice spreading panicle mutant"

Phenotype Observed value Expected value χ2-test
(3:1)
Wild-type (compact panicle) 70 85 3.30
sp (spreading panicle) 270 255

Figure 4

Co-separation of F1 marker in sp/02428 F2 recessive plant population P1: sp; P2: 02428; Plants of 1-70: Recessive plants in F2 population"

Table 3

Seven polymorphic markers for SP mapping"

Primer name Forward sequence (5′-3′) Reverse sequence (5′-3′)
L4121 AACTCGTTAGAGGTGCAG GGAACCAAAGGTAGATGA
M2 cttcagcttggacaggcgatg gaaaagagatgtctggacg
RM348 ccgctactaatagcagagag ggagctttgttcttgcgaac
E3 GTGCATCATCATCAGCCATC AAAATCGACTGCGATTGGAC
F1 CATGGAACAGCGTGTATTGG TTTTCAGTTGATCAACGCCA
RM17578 TGGATTGTTAATTTCCTGTCTACAA TGGACGTACACACATGCTGA
RM17579 GCGTACGCTTTCTAAACTTTTG AATGGCTGGTGAATAATGTGTG

Figure 5

Linkage mapping of SP on the chromosome 4 of rice"

1 鲍根良, 郑涛, 骆荣挺, 左晓旭, 王俊敏, 俞法明, 吴益芳 (2007). 粳稻散穗型突变体的诱发与特性评价. 核农学报 21, 537-540.
2 陈佳颖, 赵剑, 刘晓, 李超, 林冬枝, 董彦君, 叶胜海, 张小明 (2010). 一个新水稻温敏感叶色突变体的遗传分析及其基因分子定位. 植物学报 45, 419-425.
3 陈萍萍, 叶胜海, 陆艳婷, 金庆生, 张小明 (2013). 晚粳稻浙粳22散穗突变体spr8的特征特性及其突变基因定位. 核农学报 27, 1-8.
4 鞠培娜, 方云霞, 邹国兴, 彭友林, 孙川, 胡江, 董国军, 曾大力, 郭龙彪, 张光恒, 高振宇, 钱前 (2010). 一个新的水稻叶形突变体(tll1)的遗传分析与精细定位. 植物学报 45, 654-661.
5 李楠, 桑贤春, 赵芳明, 凌英华, 李云峰, 杨正林, 何光华 (2010). 水稻窄叶突变体nal(t)的表型分析与基因定位. 植物学报 45, 157-161.
6 王赟, 肖晗, 钱前, 李红昌, 李仕贵, 朱立煌 (2003). 水稻稀穗突变体的遗传分析及基因的精细定位. 科学通报 48, 1666-1670.
7 杨德卫, 曾美娟, 卢礼斌, 叶宁, 刘成德, 郑向华, 叶新福 (2011). 一个水稻矮秆突变体的遗传分析及基因定位. 植物学报 46, 617-624.
8 张龙步, 董克 (1993). 水稻田间试验方法与测定技术. 辽宁:辽宁科学技术出版社. pp. 39-43.
9 Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem Bull 19, 11-15.
10 Eiguchi M, Sano Y (1990). A gene complex responsible for seed shattering and panicle spreading found in common wild rice.Rice Genet Newsl 7, 105-107.
11 Grillo MA, Li CB, Fowlkes AM, Briggeman TM, Zhou AL, Schemske DW, Sang T (2009). Genetic architecture for the adaptive origin of annual wild rice, Oryza nivara.Evolution 63, 870-883.
12 Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009). Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet 41, 494-497.
13 Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013). OsLG1 regulates a closed panicle trait in domesticated rice.Nat Genet 45, 462-465.
14 Kinoshita T, Takamure I (1986). Linkage studies by the use of backcross data in rice. Genetical studies on rice plant, LXXXVIII.J Fac Agr Hokkaido Univ 61, 445-455.
15 Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003a). LAX and SPA: major regulators of shoot branching in rice.Proc Natl Acad Sci USA 100, 11765-11770.
16 Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003b). FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development 130, 3841-3850.
17 Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987). Mapmaker: an interac- tive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics 1, 174-181.
18 Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC (2010). Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.Cell Res 20, 838-849.
19 Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58, 592-605.
20 Li XH, Wu C, Deng XJ, Wang PR, Li RD, Yang ZR (2003). Molecular tagging and effect analysis of a new small grain dwarf gene in rice.Acta Bot Sin 45, 757-761.
21 Luo JJ, Hao W, Jin J, Gao JP, Lin HX (2008). Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud.).Mol Plant 1, 830-838.
22 Michelmore RW, Paran I, Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA 88, 9828-9832.
23 Mitra SK, Ganguli PM (1932). Some observations on the characters of wild rice hybrids.Indian J Agric Sci 2, 271-279.
24 Qiao YL, Piao RH, Shi JX, Lee SI, Jiang WZ, Kim BK, Lee J, Han LZ, Ma WB, Koh HJ (2011). Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.).Theor Appl Genet 122, 1439-1449.
25 Sanchez AC, Khush GS (1997). A new gene for spreading panicle in rice.Rice Genet Newsl 14, 47-48.
26 Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y (2011). Lax panicle2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276-3287.
27 Vaughan DA, Morishima H, Kadowaki K (2003). Diversity in the Oryza genus.Curr Opin Plant Biol 6, 139-146.
28 Xu Y, Zhou J, Hu F, Xu P, Deng X, Li J, Ren G, Tao D (2008). Spr5(t) a spreading panicle gene from Oryza gla- berrima.Rice Genet Newsl 25, 16-17.
29 Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003). Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L).BMC Plant Biol 3, 6.
30 Zhu ZF, Tan LB, Fu YC, Liu FX, Cai HW, Xie DX, Wu F, Wu JZ, Matsumoto T, Sun CQ (2013). Genetic control of inflo
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] Dapeng Li;Min Zhang;Qian Gao;Yong Hu;Yikun He*. An Emerging Picture of Plastid Division in Higher Plants[J]. Chin Bull Bot, 2009, 44(01): 43 -51 .
[10] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .