Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (6): 723-732.doi: 10.11983/CBB19037

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

The Genetic Diversity of Common Millet (Panicum miliaceum) Germplasm Resources Based on the EST-SSR Markers

He Jieli1,Shi Tiantian2,Chen Ling3,Wang Haigang3,Gao Zhijun4,Yang Meihong1,Wang Ruiyun2,3,*(),Qiao Zhijun3,*()   

  1. 1 College of Arts and Science, Shanxi Agricultural University, Taigu 030801, China
    2 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
    3 Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
    4 Erdos Institute of Agriculture and Animal Husbandry, Erdos 017200, China
  • Received:2019-02-24 Accepted:2019-06-18 Online:2020-07-09 Published:2019-11-01
  • Contact: Wang Ruiyun,Qiao Zhijun E-mail:wry925@126.com;nkypzs@126.com

Abstract:

The EST-SSR molecular markers of common millet (Panicum miliaceum) were developed by high-throughput sequencing. Using these markers, we assessed the genetic diversity in a panel of 144 common millet accessions collected from different ecotopic regions in China and abroad. It was shown that 80 pairs of these markers were polymorphic, with the efficiency of approximately 40%. The resolution power (Rp) was 0.67-4.67 (mean 2.00) and the amplified product sizes ranged from 50 to 500 bp. Among the examined 144 accessions, 206 allelic variations were identified in 80 loci, with 2-3 alleles at each locus. The Shannon’s diversity index (I) ranged from 0.659 3 (RYW108) to 1.087 2 (RYW124) with an average of 0.859 9. The range of polymorphism information content (PIC) was 0.222 9 (RYW98) -0.717 2 (RYW124) with an average of 0.457 3. Based on UPGMA, these 144 accessions were classified into 3 groups, two of which belonged to the the Northern China spring-sowing ecotopes and one group was mainly from the Loess Plateau spring-summer-sowing ecotopes. Based on Structure (K=4), all the accessions were divided into four groups, of which two groups represented the gene pool originated from the Northern China, whereas the other two groups from the Loess Plateau and abroad accessions. Based on principal component analysis (PCA), the accessions were clustered into seven groups, consistent with their geographic origins.

Key words: Panicum miliaceum, genetic diversity, PCA, EST-SSR markers

Table 1

Distribution of common millet accessions in different ecotopes of China and abroad"

Ecotope/abroad Origin Number of accession Total
Northwest spring and summer-sowing ecotope (NWSS) Xinjiang 4 4
Northern spring-sowing ecotope (NSP) Qinghai 13 48
Gansu 11
Inner Mongolia 14
Shanxi 10
Loess Plateau spring and summer-sowing ecotope (LPSS) Shanxi 18 37
Shaanxi 8
Ningxia 11
Northeast spring-sowing ecotope (NES) Heilongjiang 5 9
Jilin 3
Liaoning 1
Northern summer-sowing ecotope (NSU) Hebei 9 13
Shandong 2
Anhui 1
Henan 1
Southern autumn and winter-sowing ecotope (SAW) Hainan 2 2
Abroad Former Soviet Union 2 31
Poland 2
India 27
Total 144

Table 2

Screening of SSR primers for common millet"

Number Unicode Accession name Origin
1 00000177 Hongmizi Ningan, Heilongjiang
2 00000750 Baimizi Shawan, Xinjiang
3 00006653 Jinshu Hainan
4 00007238 Dahongmizi Bameng, Inner Mongolia
5 00007478 Baigedami Huangzhong, Qinghai
6 No unicode Hongshuzi Anyang, Henan

Figure 1

Distribution of resolving power values of 80 EST- SSR markers"

Table 3

Parameters of genetic diversity in different ecotope of common millet"

Ecotope/ abroad Accessions Na Ne I Ho He PIC
NWSS 4 2.3375±0.5017 2.1517±0.4194 0.7644±0.2178 0.8042±0.2688 0.5944±0.1193 0.3551
NSP 48 2.5750±0.4975 2.3106±0.3211 0.8604±0.1576 0.8228±0.1308 0.5655±0.0604 0.4536
LPSS 37 2.5750±0.4975 2.2803±0.3110 0.8506±0.1534 0.8384±0.1166 0.5615±0.0595 0.4203
NES 9 2.5125±0.5030 2.2435±0.3929 0.8289±0.1823 0.7937±0.1732 0.5737±0.0909 0.4212
NSU 13 2.5625±0.4992 2.2815±0.3527 0.8496±0.1632 0.7946±0.1608 0.5712±0.0667 0.4304
SAW 2 2.2375±0.5092 2.0608±0.4387 0.7347±0.2316 0.7812±0.3265 0.6813±0.2006 0.2156
Domestic 113 2.5750 ±0.4975 2.3122±0.3086 0.8628±0.1554 0.8200±0.1188 0.5625±0.0584 0.4651
Abroad 31 2.5750±0.4975 2.2464±0.2909 0.8387±0.1449 0.8540±0.1193 0.5571±0.0561 0.3896

Table 4

Parameters of Nei’s genetic distance and Nei’s genetic agreement in common millet populations"

Population NWSS NSP LPSS NES NSU SAW Abroad
NWSS 0.9560 0.9614 0.9487 0.9380 0.8694 0.9477
NSP 0.0449 0.9884 0.9678 0.9794 0.9110 0.9864
LPSS 0.0394 0.0117 0.9716 0.9830 0.9116 0.9865
NES 0.0527 0.0327 0.0288 0.9675 0.8974 0.9587
NSU 0.0640 0.0208 0.0171 0.0331 0.9023 0.9762
SAW 0.1400 0.0932 0.0926 0.1083 0.1029 0.9102
Abroad 0.0537 0.0137 0.0136 0.0422 0.0240 0.0941

Figure 2

Cluster analysis chart of common millet accessions based on UPGMA NWSS, NSP, LPSS, NES, NSU and SAW are the same as Table 1."

Table 5

Genetic diversity of common millet groups based on UPGMA cluster analysis"

Group Accessions Na Ne I Ho He PIC
A 33 2.5750±0.4975 2.3226±0.3374 0.8654±0.1620 0.8055±0.1417 0.5696±0.0636 0.4716
B 15 2.5125±0.5030 2.2471±0.3383 0.8330±0.1627 0.8153±0.1530 0.5651±0.0686 0.3993
C 96 2.5750±0.4975 2.2922±0.2894 0.8571±0.1495 0.8363±0.1111 0.5599±0.0553 0.4380
C1 70 2.5750±0.4975 2.3136±0.3098 0.8635±0.1551 0.8291±0.1199 0.5643±0.0584 0.4531
C2 26 2.5625±0.4992 2.1912±0.2797 0.8163±0.1391 0.8555 ±0.1212 0.5477±0.0558 0.3420
C11 37 2.5750±0.4975 2.3014±0.3143 0.8589±0.1561 0.8332±0.1182 0.5664±0.0603 0.4382
C12 33 2.5750±0.4975 2.3028±0.3224 0.8583±0.1571 0.8255±0.1383 0.5654±0.0610 0.4348

Figure 3

Population modeling of 144 common millet accessions based on Structure"

Figure 4

Genetic structure of common millet based on Structure Color represents group; bar and the horizontal coordinate represent origin and its serial number, respectively."

Table 6

Genetic diversity analysis of different cluster based on genetic structure (K=2 and K=4)"

Cluster Accessions Na Ne I Ho He PIC
K=2 Red 68 2.5750±0.4975 2.2446±0.2626 0.8407±0.1403 0.8602±0.1056 0.5528±0.0520 0.3773
Green 76 2.5750±0.4975 2.3396±0.3329 0.8711±0.1620 0.7975±0.1315 0.5679±0.0619 0.5031
K=4 Red 47 2.5750± 0.4975 2.3496±0.3944 0.8745±0.1768 0.7439±0.1668 0.5785±0.0743 0.5296
Green 31 2.5750± 0.4975 2.2844±0.3202 0.8516± 0.1549 0.8225±0.1399 0.5635±0.0607 0.4414
Blue 19 2.5750±0.4975 2.2973±0.3199 0.8575±0.1568 0.8190±0.1311 0.5628±0.0608 0.4450
Yellow 47 2.5750±0.4975 2.2238±0.2723 0.8312±0.1387 0.3634±0.2702 0.4984±0.1050 0.3543

Figure 5

Principal component analysis on SSR genotypes of common millet accessions"

[1] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军 ( 2015). 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学 48, 3121-3131.
[2] 国家谷子糜子产业技术体系 ( 2018). 中国现代农业产业可持续发展战略研究·谷子糜子分册. 北京: 中国农业出版社. pp. 3-22.
[3] 郭琪, 郭大龙, 郭丽丽, 张琳, 侯小改 ( 2015). SSR分子标记在牡丹亲缘关系研究中的应用与研究进展. 植物学报 50, 652-664.
[4] 连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云 ( 2016). 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学 49, 3264-3275.
[5] 刘笑瑜 ( 2017). 利用高基元SSR分析中国糜子资源的遗传多样性. 硕士论文. 太谷: 山西农业大学. pp. 22-41.
[6] 刘笑瑜, 王瑞云, 刘敏轩, 邱岩岩, 季煦, 连帅, 乔治军, 王纶, 王海岗 ( 2016). 利用SSR标记分析40份糜子资源的遗传多样性. 分子植物育种 14, 1624-1630.
[7] 王璐琳, 王瑞云, 何杰丽, 薛延桃, 陈凌, 王海岗, 乔治军 ( 2018). 糜子特异性SSR标记的开发. 山西农业科学 46, 1-4, 86.
[8] 王瑞云 (2017). 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社. pp. 20-92.
[9] 王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军 ( 2017a). 利用荧光SSR分析中国糜子遗传多样性. 作物学报 43, 530-548.
[10] 王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军 ( 2017b). 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学 50, 3848-3859.
[11] 王舒婷, 何杰丽, 石甜甜, 陈凌, 王海岗, 王瑞云, 乔治军 ( 2019). 利用微卫星标记分析山西糜子的遗传多样性. 植物遗传资源学报 20, 69-78.
[12] 王银月, 刘敏轩, 陆平, 乔治军, 杨天育, 李海, 崔喜艳 ( 2014). 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志 ( 4), 32-38.
[13] 薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云 ( 2018). 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学 51, 2846-2859.
[14] 朱宇佳, 焦凯丽, 罗秀俊, 冯尚国, 王慧中 ( 2018). 基于SSR分子标记的酸浆属植物亲缘关系研究. 植物学报 53, 305-312.
[15] Azevedo ALS, Costa PP, Machado JC, Machado MA, Pereira AV, da Silva Lédo FJ ( 2012). Cross species amplification of Pennisetum glaucum microsatellite markers in Pennisetum purpureum and genetic diversity of napier grass accessions. Crop Sci 52, 1776-1785.
[16] Bonman JM, Babiker EM, Cuesta-Marcos A, Esvelt-Klos K, Brown-Guedira G, Chao SM, See D, Chen JL, Akhunov E, Zhang JL, Bockelman HE, Gordon TC ( 2015). Genetic diversity among wheat accessions from the USDA national small grains collection. Crop Sci 55, 1243-1253.
[17] Changmei S, Dorothy J ( 2014). Millet—the frugal grain. Int J Sci Res Rev 3(4), 75-90.
[18] Cho Yl, Chung JW, Lee GA, Ma KH, Dixit A, Gwag JG, Park YJ ( 2010). Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet ( Panicum miliaceum L.). Genes Genomics 32, 267-273.
[19] Courtois B, Frouin J, Greco R, Bruschi G, Droc G, Hamelin C, Ruiz M, Clément G, Evrard JC, Van Coppenole S, Katsantonis D, Oliveira M, Negrão S, Matos C, Cavigiolo S, Lupotto E, Piffanelli P, Ahmadi N ( 2012). Genetic diversity and population structure in a European collection of rice. Crop Sci 52, 1663-1675.
[20] Evanno G, Regnaut S, Goudet J ( 2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14, 2611-2620.
[21] Falush D, Stephens M, Pritchard JK ( 2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567-1587.
[22] Habiyaremye C, Matanguihan JB, Guedes JD, Ganjyal GM, Whiteman MR, Kidwell KK, Murphy KM ( 2017). Proso millet ( Panicum miliaceum L.) and its potential for cultivation in the pacific northwest, U.S: a review. Front Plant Sci 7, 1961.
[23] Hu XY, Wang JF, Lu P, Zhang HS ( 2009). Assessment of genetic diversity in broomcorn millet ( Panicum miliaceum L.) using SSR markers. J Genet Genomics 36, 491-500.
[24] Hunt HV, Campana MG, Lawes MC, Park YJ, Bower MA, Howe CJ, Jones MK ( 2011). Genetic diversity and phylogeography of broomcorn millet ( Panicum miliaceum L.) across Eurasia. Mol Ecol 20, 4756-4771.
[25] Liu KJ, Muse SV ( 2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128-2129.
[26] Liu MX, Xu Y, He JH, Zhang S, Wang YY, Lu P ( 2016). Genetic diversity and population structure of broomcorn millet ( Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci 17, 370.
[27] Lu HY, Zhang JP, Liu KB, Wu NQ, Li YM, Zhou KS, Ye ML, Zhang TY, Zhang HJ, Yang XY, Shen LC, Xu DK, Li Q ( 2009). Earliest domestication of common millet ( Panicum miliaceum ) in East Asia extended to 10, 000 years ago. Proc Natl Acad Sci USA 106, 7367-7372.
[28] Murray MG, Thompson WF ( 1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8, 4321-4325.
[29] Prevost A, Wilkinson MJ ( 1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98, 107-112.
[30] Rajput SG, Plyler-Harveson T, Santra DK ( 2014). Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 5, 175-186.
[31] Rajput SG, Santra DK ( 2016). Evaluation of genetic diversity of proso millet germplasm available in the United States using simple-sequence repeat markers. Crop Sci 56, 2401-2409.
[32] Rohlf FJ (2002). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.10. New York: Exter Publishing Ltd. Setauket.
[33] Saha D, Channabyre Gowda MV, Arya L, Verma M, Bansal KC ( 2016). Genetic and genomic resources of small millets. Crit Rev Plant Sci 35, 56-79.
[34] Satya P, Karan M, Jana S, Mitra S, Sharma A, Karmakar PG, Ray DP ( 2015). Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie ( Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 3, 62-70.
[35] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S ( 2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 665, 2731-2739.
[36] Tiwar G, Singh R, Singh N, Choudhury DR, Paliwal R, Kumar A, Gupta V ( 2016). Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in kalmegh [Andrographis paniculata(Burm. f.) Nees]. Ind Crops Prod 86, 1-11.
[37] Van Inghelandt D, Melchinger AE, Lebreton C, Stich B ( 2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120, 1289-1299.
[38] Wang RY, Hunt HV, Qiao ZJ, Wang L, Han YH ( 2016). Diversity and cultivation of broomcorn millet ( Panicum miliaceum L.) in China: a review. Econ Bot 70, 332-342.
[39] Wang RY, Wang HG, Liu XY, Ji X, Chen L, Lu P, Liu MX, Teng B, Qiao ZJ ( 2018). Waxy allelic diversity in common millet(Panicum miliaceum L.) in China. Crop J 6, 377-385.
[40] Yeh FC, Boyle TJB ( 1997). Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot 129, 157-163.
[1] Jinyuan Su,Yu Yan,Chong Li,Dan Li,Fang K. Du. Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms [J]. Biodiv Sci, 2020, 28(3): 376-384.
[2] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
[3] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741.
[4] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. Advances in the study of population genetic diversity at plant species’ margins [J]. Chin J Plant Ecol, 2019, 43(5): 383-395.
[5] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[6] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[7] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method [J]. Chin Bull Bot, 2019, 54(1): 58-63.
[8] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[9] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[10] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[11] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiv Sci, 2018, 26(4): 384-395.
[12] Ren Mengyun, Du Leshan, Chen Yanjun, Zhang Dun, Shen Qi, Guan Xiao, Zhang Yindong. Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence [J]. Chin Bull Bot, 2018, 53(3): 313-321.
[13] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding [J]. Biodiv Sci, 2018, 26(3): 217-228.
[14] Xunhe Huang,Zheqi Yu,Zhuoxian Weng,Danlin He,Zhenhua Yi,Weina Li,Jiebo Chen,Xiquan Zhang,Bingwang Du,Fusheng Zhong. Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens [J]. Biodiv Sci, 2018, 26(3): 238-247.
[15] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. Population structure and genetic divergence in Firmiana danxiaensis [J]. Biodiv Sci, 2018, 26(11): 1168-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .