Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 300-315.doi: 10.11983/CBB18217

• INVITED REVIEW • Previous Articles     Next Articles

Role of Post-translational Modification of Proteins in ABA Signaling Transduction

Zhang Jing,Hou Suiwen   

  1. Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2018-10-18 Accepted:2019-01-02 Online:2019-11-24 Published:2019-05-01
  • Contact: Hou Suiwen

Abstract:

Abscisic acid (ABA) plays a key role in the growth, development and stress condition of plants. The process of plant response to ABA is completed by signal recognition, transduction, and response cascades. The core ABA signaling pathway consists of receptor RCAR/PYR/PYLs, phosphatase PP2Cs, kinase SnRK2s, and transcription factors and ion channel proteins. Post-translational modifications (PTMs) of proteins such as phosphorylation, ubiquitination, small ubi- quitin-related modi?er (SUMOylation) and redox modifications plays an important role in ABA signaling. This review focused on the role of modifications in the core ABA signaling pathway.

Key words: ABA, phosphorylation, PTMs, redox, SUMOylation, ubiquitination

Figure 1

The regulatory roles of protein phosphorylation in coreABA signaling ABA transport is performed by transporters, such as AtABCGs. The core ABA signaling pathway is composed of RCAR/PYR/PYLs, PP2Cs, SnRK2s, and the substrates of SnRK2s. The substrates of SnRK2s include AREBs, HAT1, SLAC1, KAT1, NADPH oxidases, BRM, TOR complex, and APC/C complex. AREBs, BRM and SLAC1 can be dephosphorylated by PP2Cs. BIN2 is a key factor that integrates BR and ABA signaling pathway. The TOR complex and ABA signaling antagonistically regulates plant growth and stress response. CPK23 is independent of SnRK2s in stomatal movement. Different phosphorylation sites of ABA receptor PYR1 by CARK1 and AEL1 give opposite results. Green arrows represent promotion; Red T-shaped bars represent repression. PM: Plasma membrane; P: Phosphorylation; Ub: Ubiquitination; A-: Negative ions; ROS: Reactive oxygen species; TR: Transcriptional regulation"

Figure 2

Protein ubiquitination and sumoylation regulate ABA biosynthesis and catabolism, ABA perception, signal transduction and responsesAAO3 and CYP707A are ABA synthase and oxidase enzyme, respectively. The core ABA signaling pathway is composed of RCAR/PYR/PYLs-PP2Cs-SnRK2s-bZIPs. In this figure, bZIPs represent OsBZIP23, ABF3, ABF1 and ABI5 (inside the box on the green background). The proteins in the red (green) background are negative (positive) factors in ABA signaling. Arrows represent promotion; T-shaped bars represent repression; The solid line indicates direct interaction; Dotted lines and ? represent uncon?rmed. +/-P: Phosphorylation/dephosphorylation; +U: Ubiquitination; +/-S: SUMOylation/de-SUMOylation; TR: Transcriptional regulation"

[33] Finkelstein R ( 2013). Abscisic acid synthesis and response. Arabidopsis Book 11, e0166.
doi: 10.1199/tab.0166 pmid: 22303212
[34] Fujii H, Verslues PE, Zhu JK ( 2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494.
doi: 10.1105/tpc.106.048538 pmid: 17307925
[35] Fujii H, Zhu JK ( 2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106, 8380-8385.
doi: 10.1073/pnas.0903144106 pmid: 19420218
[36] Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K ( 2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124, 509-525.
doi: 10.1007/s10265-011-0412-3
[37] Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K ( 2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50, 2123-2132.
doi: 10.1093/pcp/pcp147 pmid: 19880399
[38] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K ( 2013). Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147, 15-27.
doi: 10.1111/j.1399-3054.2012.01635.x pmid: 22519646
[39] Garcia ME, Lynch T, Peeters J, Snowden C, Finkelstein R ( 2008). A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol Biol 67, 643-658.
doi: 10.1007/s11103-008-9344-2 pmid: 18484180
[40] Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E, Romeis T, Hedrich R ( 2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca 2+ affinities . Proc Natl Acad Sci USA 107, 8023-8028.
doi: 10.1073/pnas.0912030107 pmid: 20385816
[41] Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R ( 2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106, 21425-21430.
doi: 10.1073/pnas.0912021106
[42] Han SK, Sang Y, Rodrigues A, Biol F, Wu MF, Rodriguez PL, Wagner D ( 2012). The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24, 4892-4906.
doi: 10.1105/tpc.112.105114 pmid: 23209114
[43] He JX, Gendron JM, Yang Y, Li J, Wang ZY ( 2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99, 10185-10190.
doi: 10.1073/pnas.152342599
[44] Himmelbach A, Hoffmann T, Leube M, H?hener B, Grill E ( 2002). Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21, 3029-3038.
[45] H?rak H, Sierla M, T?ldsepp K, Wang C, Wang YS, Nuhkat M, Valk E, Pechter P, Merilo E, Saloj?rvi J, Overmyer K, Loog M, Brosché M, Schroeder JI, Kangasj?rvi J, Kollist H ( 2016). A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28, 2493-2509.
doi: 10.1105/tpc.16.00131
[46] Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK ( 2016). Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genet 12, e1005835.
doi: 10.1371/journal.pgen.1005835 pmid: 26943172
[47] Hu R, Zhu Y, Shen G, Zhang H ( 2014). TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE 5-regulated gene expression in Arabidopsis. Plant Physiol 164, 721-734.
[48] Hu Y, Yu D ( 2014). BRASSINOSTEROID INSENSITIVE 2 interacts with ABSCISIC ACID INSENSITIVE 5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26, 4394-4408.
doi: 10.1105/tpc.114.130849 pmid: 25415975
[49] Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z ( 2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24, 2546-2561.
doi: 10.1105/tpc.112.100107 pmid: 22730405
[50] Hua Z, Vierstra RD ( 2011). The cullin-RING ubiquitin- protein ligases. Annu Rev Plant Biol 62, 299-334.
doi: 10.1146/annurev-arplant-042809-112256
[51] Huizinga DH, Denton R, Koehler KG, Tomasello A, Wood L, Sen SE, Crowell DN ( 2010). Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. Mol Plant 3, 143-155.
doi: 10.1093/mp/ssp091 pmid: 2807925
[52] Humphrey SJ, James DE, Mann M ( 2015). Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26, 676-687.
doi: 10.1016/j.tem.2015.09.013
[53] Irigoyen ML, Iniesto E, Rodriguez L, Puga MI, Yanagawa Y, Pick E, Strickland E, Paz-Ares J, Wei N, De Jaeger G, Rodriguez PL, Deng XW, Rubio V ( 2014). Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728.
[54] Jensen ON ( 2006). Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7, 391-403.
doi: 10.1038/nrm1939 pmid: 16723975
[55] Jin D, Wu M, Li B, Bücker B, Keil P, Zhang S, Li J, Kang D, Liu J, Dong J, Deng XW, Irish V, Wei N ( 2018). The COP9 signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5. PLoS Genet 14, e1007237.
doi: 10.1371/journal.pgen.1007237
[56] Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG ( 2012a). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63, 1013-1024.
doi: 10.1093/jxb/err338 pmid: 22071266
[57] Kim JH, Kim WT ( 2013). The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162, 1733-1749.
doi: 10.1104/pp.113.220103
[58] Kim TH, B?hmer M, Hu H, Nishimura N, Schroeder JI ( 2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca 2+ signaling . Annu Rev Plant Biol 61, 561-591.
doi: 10.1146/annurev-arplant-042809-112226
[1] 韩丹璐, 赖建彬, 阳成伟 ( 2018). SUMO E3连接酶在植物生长发育中的功能研究进展. 植物学报 53, 175-184.
[2] 王宇, 何奕騉 ( 2017). 一氧化氮介导蛋白质亚硝基化与甲基化协调植物非生物胁迫的分子机制. 植物学报 52, 681-684.
doi: 10.11983/CBB17177
[59] Kim TW, Michniewicz M, Bergmann DC, Wang ZY ( 2012b). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482, 419-422.
doi: 10.1038/nature10794 pmid: 3292258
[60] Ko JH, Yang SH, Han KH ( 2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47, 343-355.
doi: 10.1111/j.1365-313X.2006.02782.x pmid: 16792696
[3] 伍静辉, 谢楚萍, 田长恩, 周玉萍 ( 2018). 脱落酸调控种子休眠和萌发的分子机制. 植物学报 53, 542-555.
doi: 10.11983/CBB18080
[4] Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O ( 2015). S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6, 8669.
doi: 10.1038/ncomms9669 pmid: 26493030
[61] Kong L, Cheng J, Zhu Y, Ding Y, Meng J, Chen Z, Xie Q, Guo Y, Li J, Yang S, Gong Z ( 2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun 6, 8630.
doi: 10.1038/ncomms9630 pmid: 4667695
[62] Kulich I, Pe?enková T, Sekere? J, Smetana O, Fendrych M, Foissner I, H?ftberger M, ?arsky V ( 2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14, 1155-1165.
doi: 10.1111/tra.12101 pmid: 23944713
[5] Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL ( 2012). Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158, 970-980.
doi: 10.1104/pp.111.188623 pmid: 22198272
[6] Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A ( 2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4, 63.
doi: 10.3389/fpls.2013.00063 pmid: 23531630
[63] Kuromori T, Fujita M, Urano K, Tanabata T, Sugimoto E, Shinozaki K ( 2016). Overexpression of AtABCG25 enhan-ces the abscisic acid signal in guard cells and improves plant water use efficiency. Plant Sci 251, 75-81.
[64] Kurup S, Jones HD, Holdsworth MJ ( 2000). Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J 21, 143-155.
[7] Augustine RC, Vierstra RD ( 2018). SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol 45, 143-154.
doi: 10.1016/j.pbi.2018.06.006 pmid: 30014889
[8] Batisti? O, Rehers M, Akerman A, Schlücking K, Steinhorst L, Yalovsky S, Kudla J ( 2012). S-acylation- dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Res 22, 1155-1168.
doi: 10.1038/cr.2012.71 pmid: 22547024
[65] Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P ( 2011). MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 21, 1116-1128.
doi: 10.1016/j.devcel.2011.10.018 pmid: 22172674
[66] Lee HG, Seo PJ ( 2016). The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signaling by promoting protein turnover of MYB96. Nat Commun 7, 12525.
doi: 10.1038/ncomms12525 pmid: 27615387
[9] Begara-Morales JC, Chaki M, Valderrama R, Sanchez- Calvo B, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB ( 2018). Nitric oxide buffering and conditional nitric oxide release in stress response. J Exp Bot 69, 3425-3438.
doi: 10.1093/jxb/ery072
[10] Belda-Palazon B, Rodriguez L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Peirats-Llobet M, Zhao Q, De Winne N, Gevaert K, De Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL ( 2016). FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell 28, 2291-2311.
doi: 10.1105/tpc.16.00178 pmid: 27495812
[67] Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW ( 2010). DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732.
[68] Lee K, Lee HG, Yoon S, Kim HU, Seo PJ ( 2015). The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE 4 in the control of seed germination. Plant Physiol 168, 677-689.
[11] Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier- Brygoo H, Thomine S ( 2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141, 1316-1327.
doi: 10.1104/pp.106.079327 pmid: 16766677
[12] Belkhadir Y, Jaillais Y ( 2015). The molecular circuitry of brassinosteroid signaling. New Phytol 206, 522-540.
doi: 10.1111/nph.13269 pmid: 25615890
[69] Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I ( 2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126, 1109-1120.
doi: 10.1016/j.cell.2006.07.034 pmid: 16990135
[70] Li D, Zhang L, Li X, Kong X, Wang X, Li Y, Liu Z, Wang J, Li X, Yang Y ( 2018). AtRAE1 is involved in degradation of ABA receptor RCAR1 and negatively regulates ABA signaling in Arabidopsis. Plant Cell Environ 41, 231-244.
doi: 10.1111/pce.13086 pmid: 29044697
[13] Bhatnagar N, Min MK, Choi EH, Kim N, Moon SJ, Yoon I, Kwon T, Jung KH, Kim BG ( 2017). The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10. Plant Mol Biol 93, 389-401.
doi: 10.1007/s11103-016-0568-2 pmid: 28000033
[14] Brady SM, Sarkar SF, Bonetta D, McCourt P ( 2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34, 67-75.
[71] Li F, Li M, Wang P, Cox JrKL, Duan L, Dever JK, Shan L, Li Z, He P ( 2017). Regulation of cotton ( Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytol 215, 1462-1475.
doi: 10.1111/nph.14680 pmid: 28700082
[72] Li Y, Zhang L, Li D, Liu Z, Wang J, Li X, Yang Y ( 2016). The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signaling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ 39, 571-582.
doi: 10.1111/pce.12639 pmid: 26386272
[15] Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjarvi J, Ghassemian M, Stephan AB, Hu H, Schroeder JI ( 2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109, 10593-10598.
doi: 10.1073/pnas.1116590109 pmid: 22689970
[16] Brugiére N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE ( 2017). Overexpression of RING domain E3 ligase ZmXERICO1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiol 175, 1350-1369.
doi: 10.1104/pp.17.01072 pmid: 28899960
[73] Liang S, Lu K, Wu Z, Jiang SC, Yu YT, Bi C, Xin Q, Wang XF, Zhang DP ( 2015). A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signaling in response to abscisic acid. J Exp Bot 66, 6355-6369.
doi: 10.1093/jxb/erv341 pmid: 4588886
[74] Lim CW, Baek W, Lee SC ( 2017). The pepper RING-type E3 ligase CaAIRF1 regulates ABA and drought signaling via CaADIP1 protein phosphatase degradation. Plant Phy-siol 173, 2323-2339.
doi: 10.1104/pp.16.01817 pmid: 28184010
[75] Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J ( 2012). Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1. Nat Com-mun 3, 752.
doi: 10.1038/ncomms1716 pmid: 3316886
[76] Lin Q, Wu F, Sheng P, Zhang Z, Zhang X, Guo X, Wang J, Cheng Z, Wang J, Wang H, Wan J ( 2015). The SnRK2-APC/C (TE) regulatory module mediates the antagonistic action of gibberellic acid and abscisic acid pathways. Nat Commun 6, 7981.
doi: 10.1038/ncomms8981
[17] Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez- Guzman M, Sayas E, Munoz-Bertomeu J, Iba?ez C, Serrano R, Rodriguez PL ( 2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J 80, 1057-1071.
doi: 10.1111/tpj.12708 pmid: 25330042
[18] Cai Z, Liu J, Wang H, Yang C, Chen Y, Li Y, Pan S, Dong R, Tang G, Barajas-Lopez JDD, Fujii H, Wang X ( 2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci USA 111, 9651-9656.
doi: 10.1073/pnas.1316717111 pmid: 24928519
[77] Linster E, Stephan I, Bienvenut WV, Maple-Gr?dem J, Myklebust LM, Huber M, Reichelt M, Sticht C, M?ller SG, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M ( 2015). Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 6, 7640.
doi: 10.1038/ncomms8640 pmid: 26184543
[78] Liu F, Wang X, Su M, Yu M, Zhang S, Lai J, Yang C, Wang Y ( 2015). Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biol 15, 225.
doi: 10.1186/s12870-015-0613-3 pmid: 4574183
[19] Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J ( 2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8, ra89.
doi: 10.1126/scisignal.aaa7981 pmid: 26329583
[20] Castro PH, Couto D, Freitas S, Verde N, Macho AP, Huguet S, Botella MA, Ruiz-Albert J, Tavares RM, Bejarano ER, Azevedo H ( 2016). SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Mol Biol 92, 143-159.
doi: 10.1007/s11103-016-0500-9 pmid: 27325215
[21] Castro PH, Tavares RM, Bejarano ER, Azevedo H ( 2012). SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci 69, 3269-3283.
doi: 10.1007/s00018-012-1094-2 pmid: 22903295
[22] Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH ( 2007). The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966.
doi: 10.1105/tpc.106.049981
[79] Liu H, Stone SL ( 2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22, 2630-2641.
[80] Lois LM, Lima CD, Chua NH ( 2003). Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359.
[23] Chen HH, Qu L, Xu ZH, Zhu JK, Xue HW ( 2018). EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/PYLs in Arabidopsis. Mol Plant 11, 706-719.
doi: 10.1016/j.molp.2018.02.012 pmid: 29505832
[24] Chen L, Lee JH, Weber H, Tohge T, Witt S, Roje S, Fernie AR, Hellmann H ( 2013a) . Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. Plant Cell 25, 2253-2264.
doi: 10.1105/tpc.112.107292 pmid: 23792371
[25] Chen YT, Liu H, Stone S, Callis J ( 2013b) . ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J 75, 965-976.
doi: 10.1111/tpj.12259 pmid: 23742014
[26] Cheng C, Wang Z, Ren Z, Zhi L, Yao B, Su C, Liu L, Li X ( 2017). SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet 13, e1006947.
[81] Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH ( 2003). AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17, 410-418.
doi: 10.1101/gad.1055803
[82] Lozano-Juste J, León J ( 2010). Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol 152, 891-903.
doi: 10.4161/psb.5.3.11235 pmid: 20007448
[27] Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP ( 2012). Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol 158, 363-375.
doi: 10.1104/pp.111.189738 pmid: 22095047
[28] Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY ( 2005). Arabidopsis calcium- dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139, 1750-1761.
doi: 10.1104/pp.105.069757
[83] Luo J, Shen G, Yan J, He C, Zhang H ( 2006). AtCHIP functions as an E3 ubiquitin ligase of protein phosphatase 2A subunits and alters plant response to abscisic acid treatment. Plant J 46, 649-657.
doi: 10.1111/j.1365-313X.2006.02730.x pmid: 16640601
[84] Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ ( 2001). Promotion of NEDD8-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382-1385.
doi: 10.1126/science.1059780 pmid: 11337588
[29] Cohen P ( 2002). The origins of protein phosphorylation. Nat Cell Biol 4, E127-E130.
doi: 10.1038/ncb0502-e127 pmid: 11988757
[30] Dai M, Xue Q, McCray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, Deng XW, Wang H ( 2013). The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25, 517-534.
doi: 10.1105/tpc.112.105767 pmid: 23404889
[85] Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL ( 2013). Arabidopsis CIPK26 interacts with KEG, components of the ABA signaling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64, 2779-2791.
doi: 10.1093/jxb/ert123 pmid: 36979547
[86] Lyzenga WJ, Sullivan V, Liu H, Stone SL ( 2017). The kinase activity of calcineurin B-like interacting protein kinase 26 (CIPK26) influences its own stability and that of the ABA-regulated ubiquitin ligase, keep on going (KEG). Front Plant Sci 8, 502.
doi: 10.3389/fpls.2017.00502 pmid: 5385374
[87] Ma QJ, Sun MH, Lu J, Liu YJ, You CX, Hao YJ ( 2017). An apple CIPK protein kinase targets a novel residue of AREB transcription factor for ABA-dependent phosphorylation. Plant Cell Environ 40, 2207-2219.
doi: 10.1111/pce.13013 pmid: 28667821
[88] Ma T, Yoo MJ, Zhang T, Liu L, Koh J, Song WY, Harmon AC, Sha W, Chen S ( 2018). Characterization of thiol-based redox modifications of Brassica napus SNF1-related protein kinase 2.6-2C. FEBS Open Biol 8, 628-645.
[89] Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E ( 2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
[90] Merilo E, Jalakas P, Laanemets K, Mohammadi O, H?rak H, Kollist H, Brosché M ( 2015). Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol Plant 8, 1321-1333.
doi: 10.1016/j.molp.2015.06.006 pmid: 26099923
[31] Dong T, Park Y, Hwang I ( 2015). Abscisic acid: biosynthesis, inactivation, homoeostasis and signaling. Essays Biochem 58, 29-48.
doi: 10.1042/bse0580029 pmid: 26374885
[32] Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF ( 2014). Arabidopsis RAV1 transcription factor, phosphory- lated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80, 654-668.
doi: 10.1111/tpj.12670
[91] Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP ( 2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18, 2749-2766.
doi: 10.1105/tpc.106.044230 pmid: 16998070
[92] Miricescu A, Goslin K, Graciet E ( 2018). Ubiquitylation in plants: signaling hub for the integration of environmental signals. J Exp Bot 69, 4511-4527.
doi: 10.1093/jxb/ery165
[93] Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM ( 2009). Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106, 5418-5423.
doi: 10.1073/pnas.0811088106
[94] Mulekar JJ, Huq E ( 2014). Expanding roles of protein kinase CK2 in regulating plant growth and development. J Exp Bot 65, 2883-2893.
doi: 10.1093/jxb/ert401 pmid: 24307718
[95] Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ ( 2013). Nitric oxide in plants: an assessment of the current state of knowledge. AOB Plants 5, pls052.
doi: 10.1093/aobpla/pls052 pmid: 23372921
[96] Nagashima Y, von Schaewen A, Koiwa H ( 2018). Function of N-glycosylation in plants. Plant Sci 274, 70-79.
doi: 10.1016/j.plantsci.2018.05.007
[97] Ng LM, Soon FF, Zhou XE, West GM, Kovach A, Suino-Powell KM, Chalmers MJ, Li J, Yong EL, Zhu JK, Griffin PR, Melcher K, Xu HE ( 2011). Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc Natl Acad Sci USA 108, 21259-21264.
doi: 10.1073/pnas.1118651109 pmid: 22160701
[98] Pandey S, Nelson DC, Assmann SM ( 2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136-148.
doi: 10.1016/j.cell.2008.12.026 pmid: 19135895
[99] Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA, Lee SY, Bohnert HJ, Yun DJ ( 2010). Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant Cell Environ 33, 1923-1934.
doi: 10.1111/j.1365-3040.2010.02195.x pmid: 20561251
[100] Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Sch-roeder JI, Volkman BF, Cutler SR ( 2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
[101] Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL ( 2016). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9, 136-147.
doi: 10.1016/j.molp.2015.10.003 pmid: 26499068
[102] Qi J, Song CP, Wang B, Zhou J, Kangasj?rvi J, Zhu JK, Gong Z ( 2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60, 805-826.
doi: 10.1111/jipb.12654 pmid: 29660240
[103] Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S ( 2009). Identification of a novel E3 ubiquitin ligase that is required for suppression of pre mature senescence in Arabidopsis. Plant J 59, 39-51.
doi: 10.1111/j.1365-313X.2009.03846.x pmid: 19309463
[104] Rosenberger CL, Chen J ( 2018). To grow or not to grow: TOR and SnRK2 coordinate growth and stress response in Arabidopsis. Mol Cell 69, 3-4.
doi: 10.1016/j.molcel.2017.12.013
[105] Saruhashi M, Ghosh TK, Arai K, Ishizaki Y, Hagiwara K, Komatsu K, Shiwa Y, Izumikawa K, Yoshikawa H, Umezawa T, Sakata Y, Takezawa D ( 2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci USA 112, E6388-E6396.
doi: 10.1073/pnas.1511238112 pmid: 26540727
[106] Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N ( 2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424, 439-448.
doi: 10.1042/BJ20091221
[107] Seo DH, Ahn MY, Park KY, Kim EY, Kim WT ( 2016). The N-terminal UND motif of the Arabidopsis U-box E3 ligase PUB18 is critical for the negative regulation of ABA- mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit Exo70B1. Plant Cell 28, 2952-2973.
[108] Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW ( 2014). ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711.
doi: 10.1105/tpc.113.119974 pmid: 24563203
[109] Shang Y, Dai C, Lee MM, Kwak JM, Nam KH ( 2016). BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Mol Plant 9, 447-460.
doi: 10.1016/j.molp.2015.12.014 pmid: 26724418
[110] Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP ( 2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823-826.
doi: 10.1038/nature05176 pmid: 17051210
[111] Singh D, Laxmi A ( 2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6, 895.
doi: 10.3389/fpls.2015.00895 pmid: 4625044
[112] Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S, Kwak JM ( 2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982-2986.
doi: 10.1016/j.febslet.2009.08.033 pmid: 19716822
[113] Srivastava AK, Zhang C, Caine RS, Gray J, Sadanandom A ( 2017). Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice. Plant J 92, 1031-1043.
doi: 10.1111/tpj.13739 pmid: 29024118
[114] Srivastava AK, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A ( 2016). SUMO is a critical regulator of salt stress responses in rice. Plant Physiol 170, 2378-2391.
doi: 10.1104/pp.15.01530 pmid: 26869703
[115] Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J ( 2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428.
doi: 10.1105/tpc.106.046532 pmid: 17194765
[116] Takahashi S, Monda K, Higaki T, Hashimoto-Sugimoto M, Negi J, Hasezawa S, Iba K ( 2017a). Differential effects of phosphatidylinositol 4-kinase (PI4K) and 3-kinase (PI3K) inhibitors on stomatal responses to environmental signals. Front Plant Sci 8, 677.
doi: 10.3389/fpls.2017.00677 pmid: 5410623
[117] Takahashi Y, Ebisu Y, Shimazaki KI ( 2017b). Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. Plant Physiol 174, 815-822.
doi: 10.1104/pp.16.01825 pmid: 28438792
[118] Takahashi Y, Kinoshita T, Matsumoto M, Shimazaki KI ( 2016). Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation. Plant J 87, 559-567.
doi: 10.1111/tpj.13217 pmid: 27227462
[119] Tan W, Zhang D, Zhou H, Zheng T, Yin Y, Lin H ( 2018). Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. PLoS Genet 14, e1007336.
doi: 10.1371/journal.pgen.1007336 pmid: 29659577
[120] Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L ( 2016). MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28, 2161-2177.
doi: 10.1105/tpc.16.00171 pmid: 27468891
[121] Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H, Bai F, Zhang P, Zhu H, He Y, Luo S, Li L, Luan S ( 2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 6, 6057.
[122] Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K ( 2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51, 1821-1839.
doi: 10.1093/pcp/pcq156 pmid: 20980270
[123] Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K ( 2009). Type 2C protein phosphatases directly regulate abscisic acid-activated pro-tein kinases in Arabidopsis. Proc Natl Acad Sci USA 106, 17588-17593.
[124] Umezawa T, Takahashi F, Shinozaki K ( 2014). Phosphory- lation networks in the abscisic acid signaling pathway. Enzymes 35, 27-56.
doi: 10.1016/B978-0-12-801922-1.00002-6
[125] Vandelle E, Delledonne M ( 2011). Peroxynitrite formation and function in plants. Plant Sci 181, 534-539.
doi: 10.1016/j.plantsci.2011.05.002 pmid: 21893249
[126] Vert G, Walcher CL, Chory J, Nemhauser JL ( 2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA 105, 9829-9834.
doi: 10.1073/pnas.0803996105 pmid: 18599455
[127] Vilela B, Nájar E, Lumbreras V, Leung J, Pagès M ( 2015). Casein kinase 2 negatively regulates abscisic acid-activated SnRK2s in the core abscisic acid-signaling module. Mol Plant 8, 709-721.
doi: 10.1016/j.molp.2014.12.012 pmid: 25744360
[128] Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S ( 2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8, 161.
doi: 10.3389/fpls.2017.00161 pmid: 5316533
[129] Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates III JR, Schroeder JI ( 2015). Identification of open stomata1- interacting proteins reveals interactions with sucrose non- fermenting1-related protein kinases 2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol 169, 760-779.
doi: 10.1104/pp.15.00575 pmid: 26175513
[130] Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X ( 2018a). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11, 315-325.
doi: 10.1016/j.molp.2017.12.013 pmid: 29275167
[131] Wang H, Wang X ( 2018). GSK3-like kinases are a class of positive components in the core ABA signaling pathway. Mol Plant 11, 761-763.
doi: 10.1016/j.molp.2018.03.019 pmid: 29625191
[132] Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK ( 2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S- nitrosylation of OST1. Proc Natl Acad Sci USA 112, 613-618.
doi: 10.1073/pnas.1423481112 pmid: 25550508
[133] Wang P, Du Y, Li Y, Ren D, Song CP ( 2010a). Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22, 2981-2998.
doi: 10.1105/tpc.109.072959 pmid: 20870959
[134] Wang P, Zhao Y, Li Z, Hsu CC, Liu X, Fu L, Hou YJ, Du Y, Xie S, Zhang C, Gao J, Cao M, Huang X, Zhu Y, Tang K, Wang X, Tao WA, Xiong Y, Zhu JK ( 2018b). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69, 100-112.
doi: 10.1016/j.molcel.2017.12.002 pmid: 29290610
[135] Wang Q, Qu GP, Kong X, Yan Y, Li J, Jin JB ( 2018c). Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development. J Integr Plant Biol 60, 924-937.
[136] Wang X, Guo C, Peng J, Li C, Wan F, Zhang S, Zhou Y, Yan Y, Qi L, Sun K, Yang S, Gong Z, Li J ( 2018d). ABRE-BINDING FACTORS play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes. New Phytol 221, 341-355.
doi: 10.1111/nph.15345
[137] Wang XJ, Zhu SY, Lu YF, Zhao R, Xin Q, Wang XF, Zhang DP ( 2010b). Two coupled components of the mitogen- activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction. Plant Cell Physiol 51, 754-766.
doi: 10.1093/pcp/pcq037 pmid: 20360020
[138] Weng JK, Ye M, Li B, Noel JP ( 2016). Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881-893.
doi: 10.1016/j.cell.2016.06.027 pmid: 27518563
[139] Withers J, Dong X ( 2017). Post-translational regulation of plant immunity. Curr Opin Plant Biol 38, 124-132.
doi: 10.1016/j.pbi.2017.05.004 pmid: 28538164
[140] Wu Q, Zhang X, Peirats-Llobet M, Belda-Palazon B, Wang X, Cui S, Yu X, Rodriguez PL, An C ( 2016). Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28, 2178-2196.
doi: 10.1105/tpc.16.00364 pmid: 27577789
[141] Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M ( 2017). Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 591, 3625-3636.
doi: 10.1002/1873-3468.12852 pmid: 28940407
[142] Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K ( 2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 ki- nases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38, 35-49.
doi: 10.1111/pce.12351 pmid: 247386452
[143] Youn JH, Kim TW ( 2015). Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant 8, 552-565.
doi: 10.1016/j.molp.2014.12.006 pmid: 25655825
[144] Yu F, Lou L, Tian M, Li Q, Ding Y, Cao X, Wu Y, Belda-Palazon B, Rodriguez PL, Yang S, Xie Q ( 2016a). ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant 9, 1570-1582.
doi: 10.1016/j.molp.2016.11.002 pmid: 27856401
[145] Yu F, Wu Y, Xie Q ( 2015). Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci 20, 569-575.
doi: 10.1016/j.tplants.2015.05.004 pmid: 26044742
[146] Yu F, Wu Y, Xie Q ( 2016b). Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant 9, 21-33.
doi: 10.1016/j.molp.2015.09.015 pmid: 26455462
[147] Yu F, Xie Q ( 2017). Non-26S proteasome endomembrane trafficking pathways in ABA signaling. Trends Plant Sci 22, 976-985.
doi: 10.1016/j.tplants.2017.08.009 pmid: 28919033
[148] Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q ( 2015a). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN 1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27, 214-227.
doi: 10.1105/tpc.114.134163 pmid: 25616872
[149] Zhang L, Li X, Li D, Sun Y, Li Y, Luo Q, Liu Z, Wang J, Li X, Zhang H, Lou Z, Yang Y ( 2018). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov 4, 30.
doi: 10.1038/s41421-018-0029-y pmid: 29928509
[150] Zhang RF, Guo Y, Li YY, Zhou LJ, Hao YJ, You CX ( 2016). Functional identification of MdSIZ1 as a SUMO E3 ligase in apple. J Plant Physiol 198, 69-80.
doi: 10.1016/j.jplph.2016.04.007 pmid: 27152458
[151] Zhang S, Qi Y, Liu M, Yang C ( 2013). SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana. J Integr Plant Biol 55, 83-95.
[152] Zhang S, Zhuang K, Wang S, Lv J, Ma N, Meng Q ( 2017). A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. J Integr Plant Biol 59, 102-117.
doi: 10.1111/jipb.12514 pmid: 27995772
[153] Zhang T, Zhu M, Song WY, Harmon AC, Chen S ( 2015b). Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. Biochim Biophys Acta 1854, 156-165.
doi: 10.1016/j.bbapap.2014.11.006 pmid: 254332644
[154] Zhang X, Garreton V, Chua NH ( 2005). The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19, 1532-1543.
doi: 10.1101/gad.1318705 pmid: 15998807
[155] Zhao J, Zhao L, Zhang M, Zafar SA, Fang J, Li M, Zhang W, Li X ( 2017). Arabidopsis E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation. Int J Mol Sci 18, 1841.
doi: 10.3390/ijms18091841 pmid: 5618490
[156] Zheng Y, Schumaker KS, Guo Y ( 2012). Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana. Proc Natl Acad Sci USA 109, 12822-12827.
doi: 10.1073/pnas.1202630109
[157] Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG ( 2015). SOS2-LIKE PROTEIN KINASE 5, an SNF1-RELATED PROTEIN KINASE 3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE 5. Plant Physiol 168, 659-676.
[158] Zhuang X, Cui Y, Gao C, Jiang L ( 2015). Endocytic and autophagic pathways crosstalk in plants. Curr Opin Plant Biol 28, 39-47.
doi: 10.1016/j.pbi.2015.08.010 pmid: 26453966
[159] Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L ( 2016). Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought resistance related genes. Plant Physiol 171, 2810-2825.
doi: 10.1104/pp.16.00469 pmid: 27325665
[1] Zhang Yang,Liu Huajie,Xue Ruili,Li Haixia,Li Hua. Cloning of Wheat TaLCD Gene and Its Regulation on Osmotic Stress [J]. Chin Bull Bot, 2020, 55(2): 137-146.
[2] Zhu Dan, Cao Hanwei, Li Yuan, Ren Dongtao. Protocols for Analyzing Plant Phospho-proteins [J]. Chin Bull Bot, 2020, 55(1): 76-82.
[3] Qu Gaoping, Jin Jingbo. Detection of SUMOylation in Plants [J]. Chin Bull Bot, 2020, 55(1): 83-89.
[4] Ke Wang,Mingjun Zhao,Jinhe Su,Liu Yang,Hong Deng,Yonghui Wang,Haijun Wu,Yi Li,Hongmei Wu,Xiaodan Wei,Tiezheng Wei,Lei Cai,Yijian Yao. The use of Checklist of Fungi in China database in the red list assessment of macrofungi in China [J]. Biodiv Sci, 2020, 28(1): 74-98.
[5] Liu Lijing, Zhao Qingzhen, Xie Qi, Yu Feifei. An Quick and Efficient Assay for In Vivo Protein Ubiquitination [J]. Chin Bull Bot, 2019, 54(6): 753-763.
[6] Zhao Qingzhen, Liu Lijing, Xie Qi, Yu Feifei. In Vitro Ubiquitination Assay for Plant Proteins [J]. Chin Bull Bot, 2019, 54(6): 764-772.
[7] Chen Wei,Zeng Xiaoxian,Xie Chuping,Tian Chang’en,Zhou Yuping. The Dynamic Regulation Mechanism of the Endo-genous ABA in Plant [J]. Chin Bull Bot, 2019, 54(6): 677-687.
[8] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[9] Jiang Kaiwen, Pan Bo, Tian Bin. Recent taxonomic changes for Fabaceae (Leguminosae) genera in China [J]. Biodiv Sci, 2019, 27(6): 689-697.
[10] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[11] Li Meng, Wei Tingting, Shi Boyang, Hao Xiyang, Xu Haigen, Sun Hongying. Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA [J]. Biodiv Sci, 2019, 27(5): 480-490.
[12] Liu Shanlin. DNA barcoding and emerging reference construction and data analysis technologies [J]. Biodiv Sci, 2019, 27(5): 526-533.
[13] Zhang Xue, Li Xing’an, Su Qinzhi, Cao Qina, Li Chenyi, Niu Qingsheng, Zheng Hao. A curated 16S rRNA reference database for the classification of honeybee and bumblebee gut microbiota [J]. Biodiv Sci, 2019, 27(5): 557-566.
[14] Liu Yaqiong,Hou Suiwen. Research Progress in Protein Phosphorylation in Plant-pathogen Interactions [J]. Chin Bull Bot, 2019, 54(2): 168-184.
[15] Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian,Xiao Yuansong. The Effect of Molybdenum on Drought Stress Response in Peach [J]. Chin Bull Bot, 2019, 54(2): 227-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .