Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (6): 741-744.doi: 10.11983/CBB18187

• COMMENTARY • Previous Articles     Next Articles

Chinese Scientists Make Groundbreaking Discoveries in Plant Cytoskeleton

Shen Jinbo1,*(), Jiang Liwen2,3,*()   

  1. 1State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
    2State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, the Chinese University of Hong Kong, Shatian, China;
    3Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen 518057, China
  • Received:2018-09-02 Online:2018-12-05 Published:2018-11-01
  • Contact: Shen Jinbo,Jiang Liwen;


Microtubules (MTs) are an essential component of the cytoskeleton in eukaryotic cells. Similar to other living organisms, for MTs, the organization and dynamics are critical for the normal growth and development of plants but are also responsible for environmental responses. Recently, Chinese scientists have made groundbreaking discoveries in illustrating the underlying mechanisms of MTs in precise regulating the dynamic organization of cortical arrays in plants.

Key words: cytoskeleton, microtubule, microtubule severing, dynamic organization

Figure 1

Schematic models of Katanin and Augmin functions on microtubules (MTs) organization in plants (modified from Wang et al., 2017, 2018) (A) The formation of Katanin complexes and MTs severing in Arabidopsis cells. Katanin is composed of a p60 subunit KTN1 and a p80 subunit KTN80, which exists as a KTN1-KTN80 heterodimer in the cytosol (left panel). KTN80 determines the precise targeting of KTN1-KTN80 heterodimers to MTs crossover and branching nucleation sites. KTN1 further triggers the oligomerization of the mixed types of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing (right panel); (B) Augmin functions in regulating microtubule arrays by preventing katanin-mediated microtubule severing and maintaining the stability of crossovers (left panel). In the Augmin knockdown mutant (amiR-AUG6), a significantly higher microtubule severing frequency occurs and a greater proportion of aligned microtubule arrays (right panel) compared to the fine-network microtubule architectures observed in wild-type (left panel)."

[1] Ehrhardt DW (2008). Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants.Curr Opin Cell Biol 20, 107-116.
doi: 10.1016/
[2] Li SD, Bashline L, Zheng YZ, Xin XR, Huang SX, Kong ZS, Kim SH, Cosgrove DJ, Gu Y (2016). Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.Proc Natl Acad Sci USA 113, 11348-11353.
doi: 10.1073/pnas.1613273113 pmid: 27647923
[3] Liu T, Tian J, Wang GD, Yu YJ, Wang CF, Ma YP, Zhang XX, Xia GX, Liu B, Kong ZS (2014). Augmin triggers mic- rotubule-dependent microtubule nucleation in interphase plant cells.Curr Biol 24, 2708-2713.
doi: 10.1016/j.cub.2014.09.053 pmid: 25447999
[4] McFarlane HE, D$\ddot{o}$ring A, Persson S (2014). The cell biology of cellulose synthesis.Annu Rev Plant Biol 65, 69-94.
doi: 10.1146/annurev-arplant-050213-040240 pmid: 24579997
[5] McNally FJ, Vale RD (1993). Identification of katanin, an ATPase that severs and disassembles stable microtu- bules.Cell 75, 419-429.
doi: 10.1016/j.sysconle.2010.10.008 pmid: 8221885
[6] Nick P (2013). Microtubules, signaling and abiotic stress.Plant J 75, 309-323.
doi: 10.1111/tpj.12102 pmid: 23311499
[7] Paredez AR, Somerville CR, Ehrhardt DW (2006). Vis- ualization of cellulose synthase demonstrates functional association with microtubules.Science 312, 1491-1495.
doi: 10.1126/science.1126551 pmid: 16627697
[8] Roll-Mecak A, McNally FJ (2010). Microtubule-severing enzymes.Curr Opin Cell Biol 22, 96-103.
doi: 10.1016/
[9] Sharp DJ, Ross JL (2012). Microtubule-severing enzymes at the cutting edge.J Cell Sci 125, 2561-2569.
doi: 10.1242/jcs.101139 pmid: 22595526
[10] Shaw SL (2013). Reorganization of the plant cortical microtubule array.Curr Opin Plant Biol 16, 693-697.
doi: 10.1016/j.pbi.2013.09.006 pmid: 24446545
[11] Wang CF, Liu WW, Wang GD, Li J, Dong L, Han LB, Wang Q, Tian J, Yu YJ, Gao CX, Kong ZS (2017). KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells.EMBO J 36, 3435-3447.
doi: 10.15252/embj.201796823 pmid: 28978669
[12] Wang GD, Wang CF, Liu WW, Ma YP, Dong L, Tian J, Yu YJ, Kong ZS (2018). Augmin antagonizes Katanin at microtubule crossovers to control the dynamic organi- zation of plant cortical arrays.Curr Biol 28, 1311-1317.
doi: 10.1016/j.cub.2018.03.007 pmid: 29657114
[13] Wasteneys GO, Ambrose JC (2009). Spatial organization of plant cortical microtubules: close encounters of the 2D kind.Trends Cell Biol 19, 62-71.
doi: 10.1016/j.tcb.2008.11.004 pmid: 19144522
[14] Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015). Visualization of cellulose synthases in Arabidopsis secondary cell walls.Science 350, 198-203.
doi: 10.1126/science.aac7446 pmid: 26450210
[1] Wang Yajing, Zhang Xinying, Huang Guirong, Liu Xiaoying, Guo Rui, Gu Fengxue, Zhong Xiuli, Mei Xurong. Characteristics of Phosphatidic Acid and the Underlying Mechanisms of ABA-induced Stomatal Movement in Plants [J]. Chin Bull Bot, 2019, 54(2): 245-254.
[2] Lingfei Li, Jianzong Peng, Xiaojing Wang. Preliminary Functional Analysis of Microtubule-associated Protein GMAP65-1 from Gerbera hybrida [J]. Chin Bull Bot, 2015, 50(1): 12-21.
[3] Zhigang Li;Xincheng Zhang;Li Lin;Suli Li;Litao Yang;Yangrui Li . Microtubule Cytoskeleton Change During Mitosis in the Shoot Apex of Sugarcane [J]. Chin Bull Bot, 2008, 25(03): 276-283.
[4] Xiaohua Wang;Huaiqing Hao;Qinli Wang;Maozhong Zheng;Jinxing Lin. Structure of the Pollen Tube and the Mechanism of Tip Growth [J]. Chin Bull Bot, 2007, 24(03): 340-354.
[5] HE Qun;YOU Rui-Lin. Steedman's Wax Sectioning for Observation of the Microtubule Cytoskeleton in Plant Cells [J]. Chin Bull Bot, 2004, 21(05): 547-555.
[6] LIU Ning LIU Jian-Wu. The Studies of the Locomotory Apparatus and Cytoskeleton in the Spermatozoid of Ferns [J]. Chin Bull Bot, 2004, 21(02): 164-171.
[7] HE Xin-Qiang CUI Ke-Ming. Progress in Study of Secondary Wall Formation in Plants [J]. Chin Bull Bot, 2002, 19(05): 513-522.
[8] HOU Lei-PingLI Mei-Lan. Progress of Studies on the Plant Growth Promoting Mechanism of Brassinolide (BR) [J]. Chin Bull Bot, 2001, 18(05): 560-566.
[9] CAl Xue. The Dynamics and Significance of Cytoskeletons in Pollen Formation of Angiosperms [J]. Chin Bull Bot, 1999, 16(04): 339-344.
[10] YU Rong;YUAN Ming and WANG Xue-Chen. Dynamics and Regulation of Microtubule System [J]. Chin Bull Bot, 1998, 15(06): 19-29.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .