Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (2): 208-216.doi: 10.11983/CBB18089

;

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Effect of Cottonseed Meal on Cotton Physiology and Growth Compensation Under Salinity-alkalinity Stress

Ma Hongxiu,Wang Kaiyong(),Zhang Kaixiang,Meng Chunmei,An Mengjie   

  1. Agricultural College, Shihezi University, Shihezi 832000, China
  • Received:2018-04-08 Accepted:2018-08-23 Online:2019-09-01 Published:2019-03-01
  • Contact: Wang Kaiyong E-mail:wky20@163.com

Abstract:

We investigated the salt-tolerant mechanism of cottonseed meal in cotton (Gossypium hirsutum) under sali- nity-alkalinity stress. Salinity-alkalinity stress of 8 g·kg -1was tested in the field to explore the effect of cottonseed meal dose on the physiology and growth of cotton. Cottonseed meal could increase the absorption of K + and decrease that of Na +. K + and Na + were kept in ion balance in cells under salinity-alkalinity stress. Cottonseed meal could effectively alleviate damage to cotton, significantly promote growth of cotton, and improve chlorophyll content and photosynthesis of leaves. An amount of 6 000 kg·hm -2 cottonseed meal was the most significant treatment, and the improvement effect of cottonseed meal under salt stress was better. According to principal component analysis, the K +/Na +ratio in leaves, root length, fresh weight, dry weight and intercellular CO2 concentration were the main factors involved in salinity-alkalinity stress.

Key words: cottonseed meal, salinity-alkalinity stress, physiology, growth, compensation effect

Figure 1

Effect of cottonseed meal on K+ (A) and Na+ (B) content of cotton under salinity-alkalinity stressCK: Control; Y0: NaCl+0 kg·hm-2 cottonseed meal; Y1: NaCl+3 000 kg·hm-2 cottonseed meal; Y2: NaCl+6 000 kg·hm-2 cottonseed meal; J0: Na2CO3+0 kg·hm-2 cottonseed meal; J1: Na2CO3+3 000 kg·hm-2 cottonseed meal; J2: Na2CO3+6 000 kg·hm-2 cottonseed meal. Different lowercase letters indicate significant differences among each treatment (P?0.05)."

Figure 2

Effect of cottonseed meal on K+/Na+ ratio of cotton under salinity-alkalinity stressCK、Y0、Y1、Y2、J0、J1 and J2see Figure 1. Different lowercase letters indicate significant differences among each treatment (P<0.05)."

Table 1

Effect of cottonseed meal on chlorophyll content of cotton leaves under salinity-alkalinity stress"

Treatment Total chlorophyll content
(mg·g-1)
Chlorophyll a content
(mg·g-1)
Chlorophyll b content
(mg·g-1)
Carotenoid content
(mg·g-1)
CK 2.51±0.10 a 1.45±0.08 a 0.66±0.06 a 0.64±0.09 a
Y0 1.51±0.08 c 1.17±0.10 bc 0.33±0.13 b 0.34±0.09 b
Y1 1.80±0.08 bc 1.37±0.08 bc 0.43±0.09 ab 0.46±0.10 ab
Y2 2.07±0.13 ab 1.44±0.09 ab 0.45±0.10 ab 0.57±0.13 ab
J0 2.18±0.19 ab 1.17±0.13 c 0.42±0.13 ab 0.28±0.08 b
J1 1.78±0.28 bc 1.37±0.13 ab 0.33±0.10 b 0.32±0.09 b
J2 1.89±0.12 bc 1.43±0.08 ab 0.40±0.11 ab 0.51±0.16 ab

Table 2

Effect of cottonseed meal on photosynthetic parameters of cotton under salinity-alkalinity stress"

Treatment Pn (μmol·m-2·s-1) Gs (mol·m-2·s-1) E (mmol·m-2·s-1) Ci (μmol·mol-1) Ls
CK 6.73±0.15 a 111.13±1.28 a 1.81±0.25 a 281.20±0.10 b 0.25±0.10 a
Y0 6.32±0.38 b 79.17±0.70 d 1.60±1.95 ab 262.79±0.07 e 0.28±0.04 a
Y1 6.57±0.15 a 85.7±0.49 c 1.67±1.10 ab 270.00±0.06 d 0.25±0.06 a
Y2 6.63±0.27 a 94.38±1.81 b 1.76±1.86 ab 282.81±0.04 b 0.21±0.10 a
J0 5.16±0.07 c 75.16±1.63 e 1.58±1.60 b 274.77±0.08 c 0.26±0.05 a
J1 5.76±0.18 bc 85.78±1.06 c 1.63±1.54 ab 282.47±0.06 b 0.21±0.10 a
J2 5.82±0.25 b 86.02±1.51 c 1.66±1.88 ab 294.13±0.10 a 0.21±0.09 a

Table 3

Effect of cottonseed meal on cotton growth under salinity-alkalinity stress"

Treatment Plant height (cm) Root length (cm) Fresh weight (g·plant -1) Dry weight (g·plant -1)
CK 89.4±0.36 b 31.83±0.78 a 184.59±0.23 a 54.49±0.26 a
Y0 84.1±0.17 c 26.1±0.61 c 135.81±0.52 g 37.89±0.46 e
Y1 91±0.58 b 29.83±0.35 b 173.12±0.88 c 44.21±0.18 c
Y2 98.67±0.58 a 30.97±0.40 ab 181.43±0.88 b 55.15±0.34 a
J0 74.33±0.58 d 22.78±0.40 d 148.47±0.43 f 34.42±0.34 f
J1 76.33±1.15 d 25.4±0.26 c 162.33±0.96 e 39.75±0.27 d
J2 82.33±0.58 c 26.4±0.17 c 165.12±0.42 d 46.63±0.71 b

Table 4

Load of different treatment factors of cotton under salinity-alkalinity stress"

Index Salt treatment Alkali treatment
PC1 PC2 PC1 PC2
K+ Root -0.05 0.94** -0.67 0.69
Stem 0.47 0.78* -0.68 0.70
Leaf 0.73 0.60 -0.09 0.96**
Na+ Root -0.83* 0.01 0.41 -0.15
Stem -0.87* -0.36 -0.98** 0.02
Leaf -0.81* 0.23 -0.95** 0.00
K+/Na+ ratio Root 0.61 0.61 -0.67 0.59
Stem 0.69 0.66 0.72 0.58
Leaf 0.96** 0.15 0.93** 0.28
Physiology index Total chlorophyll content 0.79* -0.52 0.63 -0.55
Chlorophyll a content 0.82* -0.07 0.60 0.55
Chlorophyll b content 0.56 -0.68 0.78* -0.35
Carotenoid content 0.78* -0.29 0.83* 0.19
Pn 0.61 -0.16 0.94** 0.10
Gs 0.75* -0.61 0.98** -0.03
Ci 0.94** -0.11 0.16 0.97**
E 0.74 -0.36 0.78* 0.06
Ls -0.36 -0.12 0.02 -0.27
Growth index Plant height 0.82* 0.52 0.97** 0.17
Root length 0.96** -0.10 0.97** 0.11
Fresh weight 0.97** -0.11 0.97** 0.16
Dry weight 0.96** -0.13 0.95** 0.28

Figure 3

Analysis of principal components (PC) of each index of cotton under salinity (A) and alkalinity (B) stressCK、Y0、Y1、Y2、J0、J1 and J2see Figure 1."

[1] 阿曼古丽·买买提阿力, 拉扎提·努尔布拉提, 高丽丽, 张巨松, 田立文 ( 2017). 盐胁迫对海岛棉和陆地棉幼苗生长及生理特性的影响. 植物学报 52, 465-473.
[2] 鲍士旦 ( 2000). 土壤农化分析(第3版). 北京: 中国农业出版社. pp.270-271.
[3] 陈俊 ( 2006). 碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点. 硕士论文. 长春: 东北师范大学. pp.4-10.
[4] 陈琪, 石剑华 ( 2013). 棉籽饼使用脱毒剂和生物发酵脱毒的营养分析. 当代畜禽养殖业( 10), 6-7,8.
[5] 郭凯, 巨兆强, 封晓辉, 李晓光, 刘小京 ( 2016). 咸水结冰灌溉改良盐碱地的研究进展及展望. 中国生态农业学报 24, 1016-1024.
[6] 黄清荣, 祁琳, 柏新富 ( 2018). 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响. 生态学报 38, 528-536.
[7] 贾玉珍, 朱禧月, 唐予迪, 蔡养廉, 林同保, 罗先宝, 杨兆庚, 韩海江 ( 1987). 棉花出苗及苗期耐盐性指标的研究. 河南农业大学学报 21, 30-41.
[8] 焦伟红 ( 2011). 燕麦耐盐碱渗透调节机制研究. 硕士论文. 呼和浩特: 内蒙古农业大学. pp.15-20.
[9] 李合生, 陈华癸 ( 2000). 21世纪农林本科生物系列课程改革的研究与实践(上). 中国农业教育 ( 4), 19-22.
[10] 蔺吉祥, 李晓宇, 唐佳红, 张兆军, 李卓琳, 高战武, 穆春生 ( 2011). 盐碱胁迫对小麦种子萌发、早期幼苗生长及Na +、K +代谢的影响 . 麦类作物学报 31, 1148-1152.
[11] 刘玉国, 谭兰兰, 卞龙, 王开勇 ( 2013). 盐渍化土壤改良剂的筛选. 农业科技与信息(20), 48-49, 50 .
[12] 牛花朋, 李胜荣, 申俊峰, 李祯, 佟景贵 ( 2006). 粉煤灰与若干有机固体废弃物配施改良土壤的研究进展. 地球与环境 34(2), 27-34.
[13] 石德成, 殷丽娟 ( 1993). 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报 35, 144-149.
[14] 田长彦, 周宏飞, 刘国庆 ( 2000). 21世纪新疆土壤盐渍化调控与农业持续发展研究建议. 干旱区地理 23, 177-181.
[15] 王安平, 吕云峰, 张军民, 赵青余, 王加启, 田科雄 ( 2010). 我国棉粕和棉籽蛋白营养成分和棉酚含量调研. 华北农学报 25(S1), 301-304.
doi: 10.7668/hbnxb.2010.S1.068
[16] 王文杰, 贺海升, 祖元刚, 赵修华, 杨磊, 关宇, 许慧男, 于兴洋 ( 2009). 施加改良剂对重度盐碱地盐碱动态及杨树生长的影响. 生态学报 29, 2272-2278.
[17] 韦本辉, 申章佑, 周佳, 甘秀芹, 劳承英, 周灵芝, 刘斌, 胡泊, 李艳英 ( 2017). 粉垄改造利用盐碱地效果初探. 中国农业科技导报 19(10), 107-112.
[18] 翁永玲, 宫鹏 ( 2006). 土壤盐渍化遥感应用研究进展. 地理科学 26, 369-375.
[19] 杨国会, 石德成 ( 2011). 盐碱胁迫对小冰麦相对生长率及茎叶离子积累的影响. 河南农业科学 40, 45-47, 57.
[20] 杨淑萍, 危常州, 梁永超 ( 2010). 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学 43, 1585-1593.
[21] 员学锋, 汪有科, 吴普特, 冯浩 ( 2005). PAM对土壤物理性状影响的试验研究及机理分析. 水土保持学报 19(2), 37-40.
[22] 张华宁, 李孟军, 郭秀林, 张艳敏, 刘子会 ( 2017). 盐胁迫下不同K+吸收抑制剂对小麦根系K+/Na+比和质膜相关蛋白活性的影响 . 华北农学报 32(5), 154-162.
[23] 张景云, 缪南生, 白雅梅, 万新建, 吕文河 ( 2014). 盐胁迫下二倍体马铃薯叶绿素含量和抗氧化酶活性的变化. 作物杂志 ( 5), 59-63.
[24] 张娜, 潘思轶, 侯旭杰 ( 2009). 棉籽蛋白提取工艺及其主要理化性质研究. 食品研究与开发 30(7), 36-38.
[25] 张树文, 杨久春, 李颖, 张养贞, 常丽萍 ( 2010). 1950s中期以来东北地区盐碱地时空变化及成因分析. 自然资源学报 25, 435-442.
[26] 赵可夫, 王韶唐 ( 1990). 作物抗性生理. 北京: 农业出版社. pp. 300-304.
[27] 周志林, 唐君, 曹清河, 赵冬兰, 张安 ( 2017). NaCl胁迫对甘薯植株体内K+、Na+和Cl-含量及生长的影响 . 中国农业科技导报 19(4), 17-23.
[28] 罗宾BA ( 陈恺元等译) ( 1983). 棉花生理学. 上海: 上海科学技术出版社. pp. 116-118.
[29] Boscaiu M, Estrelles E, Soriano P, Vicente O ( 2005). Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia . Biol Plant 49, 141-143.
[30] Jalees MM, Khan MZ, Saleemi MK, Khan A ( 2011). Effects of cottonseed meal on hematological, biochemical and behavioral alterations in male Japanese quail (Coturnix japonica). Pak Vet J 31, 211-214.
[31] Li RL, Shi FC, Fukuda K, Yang YL ( 2010). Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa ( Medicago sativa L.). Soil Sci Plant Nutr 56, 725-733.
[32] Munns R ( 2002). Comparative physiology of salt and water stress. Plant Cell Environ 25, 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[33] Nedjimi B, Daoud Y ( 2009). Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249, 163-166.
[34] Schroeder JI, Ward JM, Gassmann W ( 1994). Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake . Annu Rev Biophys Biomol Struct 23, 441-471.
doi: 10.1146/annurev.bb.23.060194.002301
[35] Štefanić PP, Koffler T, Adler G, Bar-Zvi D ( 2013). Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. PLoS One 8, e82548.
doi: 10.1371/journal.pone.0082548
[36] Wang LW, Showalter AM, Ungar IA ( 2005). Effects of intraspecific competition on growth and photosynthesis of Atriplex prostrata . Aquat Bot 83, 187-192.
[37] Zhang JT, Mu CS ( 2009). Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius . Soil Sci Plant Nutr 55, 685-697.
[38] Zhang TB, Zhan XY, Kang YH, Wan SQ, Feng H ( 2017). Improvements of soil salt characteristics and nutrient status in an impermeable saline-sodic soil reclaimed with an improved drip irrigation while ridge planting Lycium barbarum L. J Soils Sediments 17, 1126-1139.
[1] Yang -Zhang Hua JieLiu. Cloning of Wheat TaLCD Gene and Its Regulation on Osmotic Stress [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] . Advances in the Regulation of Plant Growth and Development by miR172-AP2 Module [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[3] . Effect of Different Facrors on Cell Growth and Polysaccharides Contents of Achyranthes Bidentata Bl. [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[4] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[5] Guo Qianqian, Zhou Wenbin. Advances in the Mechanism Underlying Plant Response to Stress Combination [J]. Chin Bull Bot, 2019, 54(5): 662-673.
[6] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[7] Zhang Tiantian, Wang Xuan, Ren Haibao, Yu Jianping, Jin Yi, Qian Haiyuan, Song Xiaoyou, Ma Keping, Yu Mingjian. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province [J]. Biodiv Sci, 2019, 27(10): 1069-1080.
[8] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[9] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[10] WU Xiao-Qi, YANG Sheng-He, HUANG Li, LI Xiao-Han, YANG Chao, QIAN Shen-Hua, YANG Yong-Chuan. Effects of forest canopy condition on the establishment of Castanopsis fargesii seedlings in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2019, 43(1): 55-64.
[11] GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45.
[12] Zhang Xuhong, Wang Di, Liang Zhenxu, Sun Meiyu, Zhang Jinzheng, Shi Lei. Callus Induction and Establishment of a Plant Regeneration System with Lilium martagon [J]. Chin Bull Bot, 2018, 53(6): 840-847.
[13] Du Kangxi, Shen Wenhui, Dong Aiwu. Advances in Epigenetic Regulation of Abiotic Stress Response in Plants [J]. Chin Bull Bot, 2018, 53(5): 581-593.
[14] Hao Tian,Wanjin Liao. Consequences of clonal growth on pollinator visitation in flowering plants [J]. Biodiv Sci, 2018, 26(5): 468-475.
[15] ZHONG Qiao-Lian,LIU Li-Bin,XU Xin,YANG Yong,GUO Yin-Ming,XU Hai-Yang,CAI Xian-Li,NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China [J]. Chin J Plan Ecolo, 2018, 42(5): 562-572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Qin Wei-cheng Li Jian-zhong. The Application Effects of the Cold-resister CR-4 in Our Area's Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 102 -104 .
[2] Ningguang Dong, Ying Gao, Wei Wang, Weilun Yin, Dong Pei. Immunogold Silver Localization of Indole-3-acetic Acid (IAA) During the Rhizogenesis of In Vitro Poplar[J]. Chin Bull Bot, 2011, 46(3): 324 -330 .
[3] HONG Wei CAO Jia-Shu. The Function of FLC in Vernalization Process[J]. Chin Bull Bot, 2002, 19(04): 406 -411 .
[4] . Development and Utilization of Plant Resources II[J]. Chin Bull Bot, 1994, 11(02): 53 -57 .
[5] FAN Qing-Shu ZHAO Jian-Cheng YU Shu-Hong LI Xiu-Qin. Progress in Study on Spore Germination and Protonema Development of the Bryophytes[J]. Chin Bull Bot, 2003, 20(03): 280 -286 .
[6] LIU Jian-Wu LIU Ning. The Progress in Study on Development of Fern Gametophytes and Differentiation of Sex Organ[J]. Chin Bull Bot, 2001, 18(02): 149 -157 .
[7] An Cheng-xi. Studies on the Chemical Constituents of Essential of Aiania-Tanuifolia[J]. Chin Bull Bot, 1997, 14(增刊): 74 -76 .
[8] Nie Wei. Observation on some Biological Characteristics of Juncellus serotinus in Transplanted Rice[J]. Chin Bull Bot, 1988, 5(01): 34 -36 .
[9] . Mechanism of Plant Photosynthetic Acclimation to Elevated Atmospheric CO2[J]. Chin Bull Bot, 2005, 22(04): 486 -493 .
[10] WEI Ze-Xiu, LIANG Yin-Li, YAMADA Satoshi, ZENG Xing-Quan, ZHOU Mao-Juan, HUANG Mao-Lin, WU Yan. RELATION OF SOIL MICROBIAL DIVERSITY TO TOMATO YIELD AND QUALITY UNDER DIFFERENT SOIL WATER CONDITIONS AND FERTILIZATIONS[J]. Chin J Plan Ecolo, 2009, 33(3): 580 -586 .