Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (5): 598-607.doi: 10.11983/CBB16191

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Spatial Distribution Pattern of Epilithic Moss Homomallium simlaense Patches in Rocky Desertification Habitats in Zhongliang Mountain, Chongqing, Southwest China

Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao*()   

  1. Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
  • Received:2016-09-25 Accepted:2017-03-06 Online:2017-07-10 Published:2017-09-01
  • Contact: Jianping Tao E-mail:taojp@swu.edu.cn

Abstract:

The present study used O-ring Point Pattern Analysis to analyze the spatial distribution patterns of three sizes of moss patches in the Karst area of Zhongliang Mountain, Chongqing, to understand the ecological characteristics and process of the common epilithic moss species Homomallium simlaense. Data were from 0.75 hm2 sample plots in three rocky desertification habitats (potential, slight, and medium rocky desertification). The total number of H. simlaense patches was higher in slight rocky desertification plots, then potential rock desertification plots; medium rock desertification plots had lower patch number. In the three habitats, the changes in patch number were from small patches>medium patches>large patches. Small and medium patches were significantly clustered at small scales but randomly distributed at other scales; however, the large patches randomly distributed at all scales. We found a positive correlation between medium and small patches at small scales in the three habitats and no significant correlation between large and medium patches at most scales, except small scales in potential rocky desertification plots. Relative humidity was the most important environmental factor affecting the moss patch distribution, and the slope and number of rock fracture also played a significant role. Small and medium patches tended to aggregate with increasing moisture and shade stress. Moss patch size and its distribution pattern are good predictors of the ecological restoration in Karst rocky desertification areas.

Key words: rocky desertification habitat, patch size, spatial distribution pattern, stress gradient hypothesis

Table 1

Survey of three types of rocky desertification habitat"

Item Plots
Potential rocky desertification (A) Slight rocky desertification (B) Medium rocky desertification (C)
Elevation (m) 552 564 585
Slope (°) 26.3 22.1 31.5
Shade degree 0.55 0.35 0.10
Aspect South Southeast Northeast
Geographical coordinates 29°41′40″N
106°24′47″E
29°41′53″N
106°24′30″E
29°41′57″N
106°24′20″E
Vegetation type Broadleaved deciduous forest
Shrub
Thick growth of grass
Shrub
Thick growth of grass
Shrub

Figure 1

The quantitative relation of Homomallium simlaense patches in 3 types of rocky desertification habitat A: Potential rocky desertification; B: Slight rocky desertification; C: Medium rocky desertification"

Figure 2

Scatterplot of spatial distributions of Homomallium simlaense patches in 3 types of rocky desertification habitat(A) Potential rocky desertification; (B) Slight rocky desertification; (C) Medium rocky desertification"

Figure 3

Spatial distribution pattern of Homomallium simlaense patches in 3 types of rocky desertification habitat(A1)-(A3) Potential rocky desertification; (B1)-(B3) Slight rocky desertification; (C1), (C2) Medium rocky desertification"

Figure 4

Spatial associations of different patches of Homomallium simlaense in 3 types of rocky desertification habitat(A1)-(A3) Potential rocky desertification; (B1)-(B3) Slight rocky desertification; (C1) Medium rocky desertification"

Table 2

Statistical characteristics of the first 4 axes of the principal component analysis in 3 types of rocky desertification habitat"

Plots Axis
1 2 3 4
Potential rocky desertification (A) Eigenvalues 0.515 0.329 0.123 0.028
Cumulative percentage variance of species data 51.5 84.4 96.6 99.4
Slight rocky desertification (B) Eigenvalues 0.527 0.398 0.057 0.016
Cumulative percentage variance of species data 52.7 92.5 98.2 99.8
Medium rocky desertification (C) Eigenvalues 0.461 0.385 0.141 0.011
Cumulative percentage variance of species data 46.1 84.7 98.7 99.8

Figure 5

Different patches of Homomallium simlaense rela- tionship with environmental factors in 3 types of rocky desertification habitat(A) Potential rocky desertification; (B) Slight rocky desertification; (C) Medium rocky desertification. 1, 2, 3……No. of patches. SFS: Rock fracture; SJ: Microhabitat (stone facing, cliff, stony gully, stone pit, and grotto); PD: Gradient; YBD: Crown density; XDSD: Relative humidity"

[1] 高福元, 石福习 (2015). 基于不同零模型的三江平原沼泽湿地主要物种小尺度点格局分析. 生态学报 35, 2029-2037.
[2] 《广西西南喀斯特生物多样性》编委会 (2011). 广西西南喀斯特生物多样性. 北京: 中国大百科全书出版社. pp.106-108.
[3] 郭柯, 刘长成, 董鸣 (2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报 35, 991-999.
[4] 郭水良, 曹同 (2000). 长白山地区森林生态系统树附生苔藓植物群落分布格局研究. 植物生态学报 24, 442-450.
[5] 郭垚鑫, 胡有宁, 李刚, 王得祥, 杨吉健, 杨改河 (2014). 太白山红桦种群不同发育阶段的空间格局与关联性. 林业科学 50, 9-14.
[6] 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄俞淞, 黄甫昭, 李冬兴, 李先琨 (2015). 广西弄岗北热带喀斯特季节性雨林监测样地种群空间点格局分析. 生物多样性 23, 183-191.
[7] 韩文衡, 向悟生, 叶铎, 吕仕洪, 丁涛, 李先琨 (2010). 广西木论保护区喀斯特常绿落叶阔叶混交林优势种空间格局及其相关性. 应用生态学报 21, 2769-2776.
[8] 吉雪花, 张元明, 陶冶, 周小兵, 张静 (2013). 藓类结皮斑块面积与环境因子的关系. 中国沙漠 33, 1803-1809.
[9] 吉雪花, 张元明, 周小兵, 吴林, 张静 (2014). 不同尺度苔藓结皮土壤性状的空间分布特征. 生态学报 34, 4006-4016.
[10] 籍烨, 张朝晖 (2014). 喀斯特石漠生态系统不同自然演替阶段中苔藓植物多样性特征分析. 植物科学学报 32, 577-585.
[11] 姜俊, 赵秀海 (2011). 吉林蛟河针阔混交林群落优势种群种间联结性. 林业科学 47, 149-153.
[12] 李军峰, 贾少华, 王智慧, 张朝晖 (2015). 喀斯特石漠化过程中苔藓植物多样性及分布与环境关系. 生态科学 34, 68-73.
[13] 刘艳, 曹同, 王剑, 曹阳 (2008). 杭州市区土生苔藓植物分布与生态因子的关系. 应用生态学报 19, 775-781.
[14] 皮春燕, 刘艳 (2014). 重庆主城区住宅小区苔藓组成与多样性. 生物多样性 22, 583-588.
[15] 宋同清, 彭晚霞, 曾馥平, 王克林, 覃文更, 谭卫宁, 刘璐, 杜虎, 鹿士杨 (2010). 木论喀斯特峰丛洼地森林群落空间格局及环境解释. 植物生态学报 34, 298-308.
[16] 王琳, 张金屯 (2004). 历山山地草甸优势种的种间关联和相关分析. 西北植物学报 24, 1435-1440.
[17] 王晓雨, 于大炮, 周莉, 周旺明, 吴志军, 郭焱, 包也, 孟莹莹, 代力民 (2015). 长白山北坡林线岳桦种群空间分布格局. 生态学报 35, 116-124.
[18] 王鑫厅, 侯亚丽, 刘芳, 常英, 王炜, 梁存柱, 苗百岭 (2011). 羊草+大针茅草原退化群落优势种群空间点格局分析. 植物生态学报 35, 1281-1289.
[19] 熊康宁 (2002). 喀斯特石漠化的遥感——GIS典型研究: 以贵州省为例. 北京: 地质出版社. pp. 23-25.
[20] 徐晟翀, 曹同, 于晶, 陈怡, 宋国元 (2006). 上海市树附生苔藓植物分布格局研究. 西北植物学报 26, 1053-1058.
[21] 许强, 吕金枝, 苗艳明, 毕润成 (2016). 翅果油树群落主要物种空间分布格局及其关联性. 植物学报 51, 49-57.
[22] 杨洪晓, 张金屯, 吴波, 李晓松, 张友炎 (2006). 毛乌素沙地油蒿种群点格局分析. 植物生态学报 30, 563-570.
[23] 张金屯 (1998). 植物种群空间分布的点格局分析. 植物生态学报 22, 344-349.
[24] 张军以, 戴明宏, 王腊春, 苏维词, 曹立国 (2015). 西南喀斯特石漠化治理植物选择与生态适应性. 地球与环境 43, 269-278.
[25] 张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报 32, 595-604.
[26] 张天汉, 代玉, 王智慧, 张朝晖 (2014). 贵州关岭县喀斯特峰丛石漠区苔藓群落生态特征. 中国岩溶 33, 192-200.
[27] 张炜平, 潘莎, 贾昕, 储诚进, 肖洒, 林玥, 白燕远, 王根轩 (2013). 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展. 植物生态学报 37, 571-582.
[28] 张元明, 曹同, 潘伯荣 (2003). 新疆博格达山地面生苔藓植物物种多样性研究. 应用生态学报 14, 887-891.
[29] 张忠华, 胡刚, 倪健 (2015). 茂兰喀斯特常绿落叶阔叶混交林树种的空间分布格局及其分形特征. 生态学报 35, 8221-8230.
[30] Bai C, Yan M, BI R, He YH (2014). Spatial pattern analysis of dominant species in Exochorda giraldii community in Xingtang Temple of Taiyue Mountains, Shanxi, China.Chin J Plant Ecol 38, 1283-1295.
[31] Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielböerger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire FI, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008). Facilitation in plant comm- unities: the past, the present, and the future.J Ecol 96, 18-34.
[32] Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Dordrecht: Springer. pp. 443-444.
[33] Callaway RM, Walker LR (1997). Competition and facilitation: a synthetic approach to interactions in plant communities.Ecology 78, 1958-1965.
[34] Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000). Spatial patterns in the distribution of tropical tree species.Science 288, 1414-1418.
[35] Glime JM (2006). Bryophyte Ecology. .
[36] Mägdefrau K (1982). Life-forms of Bryophytes. In: Smith AJE, ed. Bryophyte Ecology. Dordrecht: Springer. pp. 45-58.
[37] Nathan R (2006). Long-distance dispersal of plants.Science 313, 786-788.
[38] Rayburn AP, Schiffers K, Schupp EW (2011). Use of precise spatial data for describing spatial patterns and plant interactions in a diverse Great Basin shrub community.Plant Ecol 212, 585-594.
[39] Shen GC, He FL, Waagepetersen R, Sun IF, Hao ZQ, Chen ZS, Yu MJ (2013). Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species.Ecology 94, 2436-2443.
[40] Wiegand T, Moloney KA (2004). Rings, circles, and null- models for point pattern analysis in ecology.Oikos 104, 209-229.
[1] CHEN Yi-Chao, ZHAO Ying, SONG Xi-Qiang, REN Ming-Xun. Difference in spatial distribution patterns and population structures of Rhododendron hainanense between both sides of riparian bends [J]. Chin J Plan Ecolo, 2018, 42(8): 841-849.
[2] Li-Shan SHAN, Ming SU, Zheng-Zhong ZHANG, Yang WANG, Shan WANG, Yi LI. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients [J]. Chin J Plan Ecolo, 2018, 42(4): 475-486.
[3] Pu-Jin ZHANG, Hua QING, Lei ZHANG, Yan-Da XU, Lan MU, Ru-Han YE, Xiao QIU, Hong Chang, Hai-Hua SHEN, Jie YANG. Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland [J]. Chin J Plan Ecolo, 2017, 41(2): 165-174.
[4] Yan-Peng LI, Han XU, Yi-De LI, Tu-Shou LUO, De-Xiang CHEN, Zhang ZHOU, Ming-Xian LIN, Huai YANG. Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China [J]. Chin J Plan Ecolo, 2016, 40(9): 861-870.
[5] Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522.
[6] MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, and WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plan Ecolo, 2014, 38(3): 262-269.
[7] PENG Yi-Ke, LUO Fang-Li, LI Hong-Li, and YU Fei-Hai. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity [J]. Chin J Plan Ecolo, 2013, 37(4): 335-343.
[8] YU Guo-Lei. Effects of waterlogging on intraspecific interactions of the clonal herb Alternanthera philoxeroides [J]. Chin J Plan Ecolo, 2011, 35(9): 973-980.
[9] Mo Gao, Renyong Hu, Xianxing Chen, Weicheng Li, Bingyang Ding. Effects of disturbance, topography, and soil conditions on the distribution of invasive plants in Wenzhou [J]. Biodiv Sci, 2011, 19(4): 424-431.
[10] LI Li, CHEN Jian-Hua, REN Hai-Bao, MI Xiang-Cheng, YU Ming-Jian, YANG Bo. Spatial patterns of Castanopsis eyrei and Schima superba in mid-subtropical broadleaved evergreen forest in Gutianshan National Reserve, China [J]. Chin J Plan Ecolo, 2010, 34(3): 241-252.
[11] ZHAO Cheng-Zhang, GAO Fu-Yuan, WANG Xiao-Peng, SHENG Ya-Ping, SHI Fu-Xi. Fine-scale spatial patterns of Stellera chamaejasme population in degraded alpine grassland in upper reaches of Heihe, China [J]. Chin J Plan Ecolo, 2010, 34(11): 1319-1326.
[12] Yongjiu Cai, Zhijun Gong, Boqiang Qin . Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China [J]. Biodiv Sci, 2010, 18(1): 50-59.
[13] ZHANG Chun-Yu, ZHAO Xiu-Hai, ZHAO Ya-Zhou. COMMUNITY STRUCTURE IN DIFFERENT SUCCESSIONAL STAGES IN NORTH TEMPERATE FORESTS OF CHANGBAI MOUNTAINS, CHINA [J]. Chin J Plan Ecolo, 2009, 33(6): 1090-1100.
[14] WEI Xin-Zeng, HUANG Han-Dong, JIANG Ming-Xi, YANG Jing-Yuan. QUANTITATIVE CHARACTERISTICS AND SPATIAL DISTRIBUTION PATTERNS OF EUPTELEA PLEIOSPERMUM POPULATIONS IN RIPARIAN ZONES OF THE SHENNONGJIA AREA, CENTRAL CHINA [J]. Chin J Plan Ecolo, 2008, 32(4): 825-837.
[15] Junqi Ge, Xiaohong Sun, Zhengda Gong, Guodong Liang, Jinghui Li, Xingming Feng, Liyun Zhang, Bin Li, Shihong Fu . Spatial distribution pattern of mosquito diversity in residential area
along Lancang River in a natural protected territory, “Three Parallel
River Region” of Yunnan Province, China
[J]. Biodiv Sci, 2008, 16(1): 24-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Yan-ze;Ji Chun-ru;Yang Lin-sha and Fang wei-sheng. Coumarins from Daphne retusa[J]. Chin Bull Bot, 1994, 11(04): 41 -42 .
[2] Zhou Rong-han and Li Jia-sheng. Development and Utilization of Plant Resources III[J]. Chin Bull Bot, 1994, 11(03): 50 -54 .
[3] Wang Xin-yu and Wang Chong-ying. Effects of Cytochalasin B on Anaphase Migration of Chromosomes in Microsporocytes of Secale cereale[J]. Chin Bull Bot, 1988, 5(04): 214 -216 .
[4] Zhao Zhao-bing. The Showing of Plants in the Natural Circumstances[J]. Chin Bull Bot, 1985, 3(02): 39 -42 .
[5] Wang Xian-ze;Cheng Bing-song and Zhang Gao-zhen. Nitrate and its Influence Factors in Vegetables[J]. Chin Bull Bot, 1991, 8(03): 34 -37 .
[6] Chne Fu-heng and Fan Jun-shen. [J]. Chin Bull Bot, 1988, 5(02): 127 .
[7] Zhong Ye-cong. Five poems[J]. Chin Bull Bot, 1995, 12(专辑): 99 .
[8] Zhang Yu-ping Zhou Dong-qin Zhang Ping Xu Kai-sheng. A Comparison Between the Effects of the Comparative Effects for Rice Seedling Culture By Using of the Cold-Resister Treatment and the Vylon-film Cover[J]. Chin Bull Bot, 1994, 11(特辑): 118 -120 .
[9] Li Feng-ping;Lu Rong-zhao;Gu Tian-qing and Gao Shi-jie. Isolation and Spectroscopic Studies of Phycobilisome Core[J]. Chin Bull Bot, 1997, 14(02): 33 -35 .
[10] Xu Bing-sheng and Jin De-sun. Sibling Species and Syngameons[J]. Chin Bull Bot, 1984, 2(23): 35 -36 .