Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (4): 411-415.doi: 10.11983/CBB16121

• COMMENTARIES • Previous Articles     Next Articles

Genome-wide Association Study Opens a Window to Molecular Dissection of Rice Grain Size

Xinmin Li, Hongxuan Lin*   

  1. National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2016-06-01 Accepted:2016-06-13 Online:2016-08-05 Published:2016-07-01
  • Contact: Lin Hongxuan E-mail:hxlin@sibs.ac.cn
  • About author:

    # Co-first authors

Abstract:

High-throughput sequencing technologies bring us the genomics age, consequently facilitates genome-wide association studies (GWAS) of complex traits in crops. But GWAS has not yet been successful in detecting the genetic basis of phenotypic variations in rice due to limited mapping resolution. Recently, chinese scientists have cloned a QTL for rice grain length and weight using GWAS combining with functional investigations and propelled the molecular dissection of rice QTL from genetics to genomics. Their study provided us not only a model for investigating rice complex traits and evolutionary changes using “omics” resources but also a valuable gene for rice breeding.

1 Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses.Nat Plants 2, 15195.
2 Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice.Nat Plants 2, 15203.
3 Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015). A rare allele of GS2 enhances grain size and grain yield in rice.Mol Plant 8, 1455-1465.
4 Huang X, Han B (2014). Natural variations and genome-wide association studies in crop plants.Annu Rev Plant Biol 65, 531-551.
5 Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012a). A map of rice genome variation reveals the origin of cultivated rice.Nature 490, 497-501.
6 Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009). Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet 41, 494-497.
7 Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010). Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet 42, 961-967.
8 Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012b). Genome-wide association study of flower- ing time and grain yield traits in a worldwide collection of rice germplasm.Nat Genet 44, 32-39.
9 Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat Genet 45, 707-711.
10 Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet 42, 541-544.
11 Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet 43, 1266-1269.
12 Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010). Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107, 19579-19584.
13 Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42, 545-549.
14 Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012). The novel quan- titative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.Cell Res 22, 1666-1680.
15 Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008). Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet 40, 1023-1028.
16 Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B (2016). OsSPL13 controls grain size in cultivated rice.Nat Genet 48, 447-456.
17 Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet 39, 623-630.
18 Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Kom- eda N, Segami S, Miura K, Ogawa D, Kamura T, Su- zuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015). Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice.Proc Natl Acad Sci USA 112, 76-81.
19 Wang H, Wang H (2015). The miR156/SPL module, a regu- latory hub and versatile toolbox, gears up crops for enhan- ced agronomic traits.Mol Plant 8, 677-688.
20 Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012). Control of grain size, shape and quality by OsSPL16 in rice.Nat Genet 44, 950-954.
21 Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015a). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.Nat Genet 47, 949-954.
22 Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015b). Copy number variation at the GL7 locus contributes to grain size diversity in rice.Nat Genet 47, 944-948.
23 Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.Cell Res 18, 1199-1209.
24 Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice.Proc Natl Acad Sci USA 109, 21534-21539.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[7] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .