Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (2): 226-234.doi: 10.11983/CBB15055

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou

Ying Liu1, Baozhang Chen 1, 2*, Jing Chen 2, Guang Xu 2, 3   

  1. 1Beijing Forestry University, Beijing 100083, China;

    2State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Resources, Chinese Academy of Sciences, Beijing 100101, China

    3University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-03-31 Revised:2015-07-15 Online:2016-03-31 Published:2016-03-01
  • Contact: Baozhang Chen


Using meteorological and evapotranspiration (ET) data acquired at the Eddy Covariance Flux tower in Qianyanzhou, Jiangxi Province, for 2003 to 2007, we evaluated the applicability of 8 widely used evapotranspiration simulation models (Priestly-Taylor, Blaney-Criddle, Hargreaves-Samani, Jensen-Haise, Hamon, Turc, Makkink and Thornthwaite) for a forest ecosystem. Among these 8 models, the Priestly-Taylor model was the best (R=0.953) on a daily time scale, the Makkink model was the best (R=0.995) on a monthly scale, and the Thornthwaite model was the worst on a monthly scale (RMSE=15.559, MBE=13.436). The Jensen-Haise model failed in simulation of ET on both day and month scales. Partial correlation analysis of simulated ET against meteorological factors showed that the order of factors contributing to ET for the forest ecosystem was radiation>air temperature>surface pressure>wind speed>soil temperature>relative humidity> daytime length. Radiation was the most important driving factor for ET, which is consistent with the performance of radiation-based ET models (e.g., the Priestly-Taylor and Makkink models) being better than other models.

No related articles found!
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[10] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .