Chin Bull Bot ›› 2016, Vol. 51 ›› Issue (2): 226-234.doi: 10.11983/CBB15055

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou

Ying Liu1, Baozhang Chen 1, 2*, Jing Chen 2, Guang Xu 2, 3   

  1. 1Beijing Forestry University, Beijing 100083, China;

    2State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Resources, Chinese Academy of Sciences, Beijing 100101, China

    3University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-03-31 Revised:2015-07-15 Online:2016-03-31 Published:2016-03-01
  • Contact: Baozhang Chen E-mail:baozhang.chen@ubc.ca

Abstract:

Using meteorological and evapotranspiration (ET) data acquired at the Eddy Covariance Flux tower in Qianyanzhou, Jiangxi Province, for 2003 to 2007, we evaluated the applicability of 8 widely used evapotranspiration simulation models (Priestly-Taylor, Blaney-Criddle, Hargreaves-Samani, Jensen-Haise, Hamon, Turc, Makkink and Thornthwaite) for a forest ecosystem. Among these 8 models, the Priestly-Taylor model was the best (R=0.953) on a daily time scale, the Makkink model was the best (R=0.995) on a monthly scale, and the Thornthwaite model was the worst on a monthly scale (RMSE=15.559, MBE=13.436). The Jensen-Haise model failed in simulation of ET on both day and month scales. Partial correlation analysis of simulated ET against meteorological factors showed that the order of factors contributing to ET for the forest ecosystem was radiation>air temperature>surface pressure>wind speed>soil temperature>relative humidity> daytime length. Radiation was the most important driving factor for ET, which is consistent with the performance of radiation-based ET models (e.g., the Priestly-Taylor and Makkink models) being better than other models.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Juan Shi Baohua Zhu Kehou Pan. Advances in Research into the Production of Very Long-chain Polyunsaturated Fatty Acids in Transgenic Plants[J]. Chin Bull Bot, 2007, 24(05): 659 -666 .
[2] Sun Hong-tao;Qu Jia-xiang;Fu Wei-dong;Dong Li-hui and Liu Xin. The Screening of Best Medium for Flax Pollen Culture by Using Variance Analysis of Multifactorial Test[J]. Chin Bull Bot, 1988, 5(03): 176 -181 .
[3] YIN Heng LI Shu-Guang BAI Xue-Fang DU Yu-Guang. Research Advances in Plant Metabolomics[J]. Chin Bull Bot, 2005, 22(05): 532 -540 .
[4] Dahong Li;Hui Liu;Yanli Yang;Pingping Zhen;Jiansheng Liang. Down-regulation of OsRACK1 by Anti-sense Approach Results in Drought Tolerance Enhancement in Rice (Oryza sativa)[J]. Chin Bull Bot, 2008, 25(06): 648 -655 .
[5] Li-Xia CHENG Ping. Study on Tissue Culture and Macropropagation of Peeling-pineapple[J]. Chin Bull Bot, 2002, 19(02): 231 -233 .
[6] Hao Nai-bin;Ge Qiao-ying and Du Wei-guang. Advances in the Study of the Photosynthetic Physiology in Breeding High Photosynthetic Efficiency Soybean[J]. Chin Bull Bot, 1991, 8(02): 13 -20 .
[7] QIAN Shan-Qin WANG Zhong MO Yi-Wei GU Yun-Jie. Recent Progress in Plant Phototropism Research[J]. Chin Bull Bot, 2004, 21(03): 263 -272 .
[8] LIU Yan-Ju. New Research on Metasequoia[J]. Chin Bull Bot, 2000, 17(专辑): 165 -171 .
[9] Kuang Ting-yun;Chen Wei-lie;He Guan-fu;Bai Ke-zhi;Ye He-chun and Hu Zhi-ang. The Action of Botany on the Development of National Economy[J]. Chin Bull Bot, 1989, 6(02): 65 -68 .
[10] Meng Xiao-xiong. [J]. Chin Bull Bot, 1988, 5(02): 99 .