Chinese Bulletin of Botany ›› 2015, Vol. 50 ›› Issue (6): 768-778.doi: 10.11983/CBB14168

Previous Articles     Next Articles

Progress in Biosynthetic Pathways of Brassinosteroids

Hongyan Ren, Li Wang, Qingxiu Ma, Guang Wu*   

  1. College of Life Sciences, Shaanxi Normal University, Xi’an 710069, China
  • Received:2014-09-11 Accepted:2015-03-20 Online:2015-09-06 Published:2015-11-01
  • About author:

    ? These authors contributed equally to this paper


Brassinosteroids (BRs) play an important role in the progress of plant growth and development. This paper introduces the structure of BRs and how to study the biosynthetic pathway, then describes methods for biological and chemical detection. Finally, we detail the early C-6 oxidation pathway, the late C-6 oxidation pathway and the early C-22, C-23 hydroxylation pathway, their regulation and progress in the identification of BR-deficient mutants and enzymes for BR biosynthesis.

Figure 1

Structures of the brassinosteroids (BRs)"

Figure 2

Biosynthesis of campestanol (CN) from squalene-2,3-oxide (Zullo et al., 2002)"

Figure 3

Three biosynthetic pathways of brassinosteroids (BRs)"

Table 1

Brassinosteroid biosynthesis mutants"

植物 突变体 底物 基因的功能
拟南芥 dwf1 24-亚甲基胆甾醇 类固醇Δ24(28)-还原酶
dwf4 芸苔甾醇、(24R)-24-甲基-4-胆甾烷-3-酮、(24R)-24-甲基-5α-胆甾烷-3-酮、油菜烷醇和6-氧油菜烷醇 细胞色素P450 (CYP90B1)和C-22羟化酶
dwf5 5-脱氢麦角甾-7,24(24)-二烯醇 类固醇还原酶
dwf7 麦角甾-7,24(24)-二烯醇 类固醇还原酶
det2 (24R)-24-甲基-4-胆甾烷-3-酮和22-羟基-(24R)-24-甲基-4-胆甾烷-3-酮 类固醇-5α-还原酶
cpd 22-羟基芸苔甾醇、22,23-二羟基芸苔甾醇、6-脱氧长春花甾酮和6-脱氧茶甾酮 细胞色素P450 (CYP90A1)和C-3氧化酶
cyp90c1 22-羟基芸苔甾醇、22-羟基-(24R)-24-甲基-4-胆甾烷-3-酮、3-表-6-脱氧长春花甾酮和6-脱氧长春花甾酮 细胞色素P450 (CYP90C1)和C-23羟化酶
cyp90d1 22-羟基芸苔甾醇、22-羟基-(24R)-24-甲基-4-胆甾烷-3-酮、3-表-6-脱氧长春花甾酮和6-脱氧长春花甾酮 细胞色素P450 (CYP90D1)和C-23羟化酶
cyp85a1 6-脱氧茶甾酮、6-脱氧香蒲甾醇、3-脱氢-6-脱氧茶甾酮和6-脱氧油菜素甾酮 细胞色素P450 (CYP85A1)和C-6氧化酶
cyp85a2 6-脱氧茶甾酮、6-脱氧香蒲甾醇、3-脱氢-6-脱氧茶甾酮、6-脱氧油菜素甾酮和油菜素甾酮 细胞色素P450 (CYP85A2)和C-6氧化酶, 将CS氧化为BL
豌豆 lkb 24-亚甲基胆甾醇 类固醇Δ24(28)-还原酶
[1] 曹云英, 许锦彪, 赵华 (2006). 油菜素内酯生理效应的研究进展. 种子 25(8), 39-42.
[2] 储昭庆, 李李, 宋丽, 薛红卫 (2006). 油菜素内酯生物合成与功能的研究进展. 植物学通报 23, 543-555.
[3] 王凤茹, 王志勇 (2008). 油菜素内酯信号转导的研究进展. 华北农学报 23(S2), 29-39.
[4] 赵毓橘 (1995). 油菜素内酯研究进展. 植物学通报 12, 30-34.
[5] Akira S, Shozo F (1997). Studies on biosynthesis of bras- sinosteroids.Biosci Biotechnol Biochem 61, 757-762.
[6] Asami T, Yoshida S (1999). Brassinosteroid biosynthesis inhibitors.Trends Plant Sci 4, 348-353.
[7] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.Nat Genet 25, 25-29.
[8] Back TG, Pharis RP (2003). Structure—activity studies of brassinosteroids and the search for novel analogues and mimetics with improved bioactivity.J Plant Growth Regul 22, 350-361.
[9] Bishop GJ (2007). Refining the plant steroid hormone bio- synthesis pathway.Trends Plant Sci 12, 377-380.
[10] Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis.Proc Natl Acad Sci USA 96, 1761-1766.
[11] Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α- hydroxylation steps in brassinosteroid biosynthesis.Plant Cell 10, 231-243.
[12] Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999a). The Arabidopsis dw- arf1 mutant is defective in the conversion of 24-methyle- necholesterol to campesterol in brassinosteroid biosyn- thesis.Plant Physiol 119, 897-908.
[13] Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier CP, Gregory BD, Ross AS, Tanaka A, Yoshida S, Tax FE, Feldmann KA (1999b). The Arabidopsis dwf7/ste1 mu- tant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis.Plant Cell 11, 207-221.
[14] Chung Y, Choe S (2013). The regulation of brassinosteroid biosynthesis in Arabidopsis.CRC Crit Rev Plant Sci 32, 396-410.
[15] Clouse SD, Langford M, McMorris TC (1996). A brass- inosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development.Plant Physiol 111, 671-678.
[16] Clouse SD, Sasse JM (1998). BRASSINOSTEROIDS: es- sential regulators of plant growth and development.Annu Rev Plant Physiol Plant Mol Biol 49, 427-451.
[17] Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995). Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone.Biosci Biotechnol Biochem 59, 1543-1547.
[18] Fujioka S, Sakurai A (1997). Brassinosteroids.Nat Prod Rep 14, 1-10.
[19] Galagovsky LR, Gros EG, Ramı?rez JA (2001). Synthesis and bioactivity of natural and C-3 fluorinated biosynthetic precursors of 28-homobrassinolide.Phytochemistry 58, 973-980.
[20] Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JR JD, Steffens GL, Flippen- Anderson JL, Cook JR JC (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen.Nature 281, 216-217.
[21] He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses.Science 307, 1634-1638.
[22] Huo FF, Bai Y, Liu HW (2010). Fragmentation study of two brassinolides by ion trap tandem mass spectrometry.Chin Sci Bull 55, 2219-2224.
[23] Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, Kim MC, Shimamoto K, Han CD (2010). RAV-Like1 maintains brassinosteroid homeostasis via the coor- dinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22, 1777-1791.
[24] Khripach V, Zhabinskii V (2007). Labeled brassinosteroids for biochemical studies.Chem Rec 7, 265-274.
[25] Kim BK, Fujioka S, Takatsuto S, Tsujimoto M, Choe S (2008). Castasterone is a likely end product of brass- inosteroid biosynthetic pathway in rice.Biochem Biophys Res Commun 374, 614-619.
[26] Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis.Plant Physiol 140, 548-557.
[27] Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R (2005a). Arabi- dopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity.Plant Physiol 138, 2033-2047.
[28] Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim SK (2005b). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosyn- thesis.Plant Cell 17, 2397-2412.
[29] Kvasnica M, Oklestkova J, Bazgier V, Rarova L, Berka K, Strnad M (2014). Biological activities of new mono- hydroxylated brassinosteroid analogues with a carboxylic group in the side chain.Steroids 85, 58-64.
[30] Kwon M, Choe S (2005). Brassinosteroid biosynthesis and dwarf mutants.J Zntegr Plant Biol 48, 1-15.
[31] Lee BK, Bhinge AA, Iyer VR (2011). Wide-ranging func- tions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis.Nucleic Acids Res 39, 3558-3573.
[32] Mandava NB (1988). Plant growth-promoting brassinos- teroids.Annu Rev Plant Physiol Plant Mol Biol 39, 23-52.
[33] Marco António TZ, Günter Adam (2002). Brassinosteroid phytohormones-structure, bioactivity and applications.Braz J Plant Physiol 3, 39.
[34] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis.Plant Physiol 130, 1152-1161
[35] Mouchel CF, Osmont KS, Hardtke CS (2006). BRX mediates feedback between brassinosteroid levels and auxin signaling in root growth.Nature 443, 458-461.
[36] Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000). Biosynthetic pathways of brassinolide in Arabidopsis.Plant Physiol 124, 201-210.
[37] Noguchi T, Fujioka S, Takatsuto S, Sakurai A, Yoshida S, Li JM, Chory J (1999). Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-En-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid bio- synthesis.Plant Physiol 120, 833-840.
[38] Nomura T, Kitasaka Y, Takatsuto S, Reid JB, Fukami M, Yokota T (1999). Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea.Plant Physiol 119, 1517-1526.
[39] Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005). The last reaction producing bras- sinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.J Biol Chem 280, 17873-17879.
[40] Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation.J Biol Chem 287, 31551-31560.
[41] Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006). C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis.Plant Cell 18, 3275-3288.
[42] Poppenberger B, Rozhon W, Khan M, Husar S, Adam G, Luschnig C, Fujioka S, Sieberer T (2011). CESTA, a positive regulator of brassinosteroid biosynthesis.EMBO J 30, 1149-1161.
[43] Raichyonok TF, Khripach VA, Zhabinskii VN, Konstan- tinova OV, Drašar PB, Monti D (2009). Synthesis and spectral-luminescence properties of the conjugate of 24-epibrassinolide with porphyrin.J Appl Spectrosc 76, 542-546.
[44] Schmidt J, Voigt B, Adam G (1995). 2-deoxybrassinolide— a naturally occurring brassinosteroid from Apium graveo- lens.Phytochemistry 40, 1041-1043.
[45] Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jürgens G (2000). FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis.Genes Dev 14, 1471-1484.
[46] Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001). Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brass- inosteroid biosynthesis.Plant Physiol 126, 770-779.
[47] Suzuki H, Inoue T, Fujioka S, Saito T, Takatsuto S, Yokota T, Murofushi N, Yanagisawa T, Sakurai A (1995). Conversion of 24-methylcholesterol to 6-oxo-24- methylcholestanol, a putative intermediate of the biosyn- thesis of brassinosteroids, in cultured cells of Cathar- anthus roseus.Phytochemistry 40, 1391-1397.
[48] Swaczynová J, Novák O, Hauserová E, Fuksová K, Šíša M, Kohout L, Strnad M (2007). New techniques for the estimation of naturally occurring brassinosteroids.J Plant Growth Regul 26, 1-14.
[49] Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996). Brassinosteroids rescue the defici- ency of CYP90, a cytochrome P450, controlling cell elon- gation and de-etiolation in Arabidopsis.Cell 85, 171-182.
[50] Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005). Brassinosteroid homeostasis in Ara- bidopsis is ensured by feedback expressions of multiple genes involved in its metabolism.Plant Physiol 138, 1117-1125.
[51] Thompson MJ, Mandava N, Flippen-Anderson JL, Wor- ley JF, Dutky SR, Robbins WE, Lusby W (1979). Syn- thesis of brassinosteroids: new plant-growth-promoting steroids.European J Org Chem 44, 5002-5004.
[52] Thompson MJ, Mandava NB, Meudt WJ, Lusby WR, Spaulding DW (1981). Synthesis and biological activity of brassinolide and its 22β, 23β-isomer: novel plant growth- promoting steroids.Steroids 38, 567-580.
[53] Thompson MJ, Meudt WJ, Mandava NB, Dutky SR, Lusby WR, Spaulding DW (1982). Synthesis of bras- sinosteroids and relationship of structure to plant growth- promoting effects.Steroids 39, 89-105.
[54] Wada K, Kondo H, Marumo S (1985). A simple bioassay for brassinosteroids: a wheat leaf-unrolling test.Agric Biol Chem 49, 2249-2251.
[55] Wang H, Mao HL (2014). On the origin and evolution of plant brassinosteroid receptor kinases.J Mol Evol 78, 118-129.
[56] Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002). Nuclear-localized BZR1 mediates brassinoste- roid-induced growth and feedback suppression of brassinosteroid biosynthesis.Dev Cell 2, 505-513.
[57] Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation.Cell 109, 181-191.
[58] Yin YH, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis.Cell 120, 249-259.
[59] Yong-Hwa C, Fujioka S, Nomura T, Harada A, Yokota T, Takatsuto S, Sakurai A (1997). An alternative brassino- lide biosynthetic pathway via late C-6 oxidation.Phyto- chemistry 44, 609-613.
[60] Zhao BL, Li J (2012). Regulation of brassinosteroid bio- synthesis and inactivation.J Integr Plant Biol 54, 746-759.
No related articles found!
Full text



[1] HE Yu-Tang TU Jin-Xing FU Ting-Dong CHEN Bao-Yuan. Molecular Biology and Evolutionary Models of Self-incompatible Genes in Brassica Genus[J]. Chinese Bulletin of Botany, 2003, 20(05): 513 -521 .
[2] YANG Wen;HE Ru-Zhou;CHENG Jian-Ping;GUO Rong-Fa and KUANG Xue-Mei. Analyses of Peroxidase Isozyme in Sugarcane Varieties[J]. Chinese Bulletin of Botany, 1998, 15(06): 65 -69 .
[3] Wang Tian-chi and Lin Kan. A Review on The Application of Electrofusion in Plant Cell Engineering[J]. Chinese Bulletin of Botany, 1994, 11(03): 19 -24 .
[4] Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum[J]. Chinese Bulletin of Botany, 2014, 49(2): 167 -172 .
[5] WANG Wei, LI Qing-Kang, MA Ke-Ping. Establishment and Spatial Distribution of Quercus liaotungensis Koidz. Seedlings in Dongling Mountain[J]. Chin J Plan Ecolo, 2000, 24(5): 595 -600 .
[6] LIU Gui-Hua, ZHOU Jin, LI Wei, GUO You-Hao. Population Restoration of Oryza rufipogon II. Population Dynamics[J]. Chin J Plan Ecolo, 2002, 26(3): 372 -376 .
[7] WANG Xu-Dong, YU Zhen-Wen, WANG Dong. Effect o Potassium on Sucrose Content of Flag Leaves and Starch Accumulation of Kernels in Wheat[J]. Chin J Plan Ecolo, 2003, 27(2): 196 -201 .
[8] YU Shun-Li, JIANG Gao-Ming. The Research Development of Soil Seed Bank and Several Hot Topics[J]. Chin J Plan Ecolo, 2003, 27(4): 552 -560 .
[9] Gao Qiong. The Applicability of GM (1, N) Model to Biological Systems[J]. Chin J Plan Ecolo, 1991, 15(2): 121 -128 .
[10] WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’[J]. Chin J Plan Ecolo, 2011, 35(2): 214 -222 .