Chin Bull Bot ›› 2015, Vol. 50 ›› Issue (6): 683-690.doi: 10.11983/CBB14147

Previous Articles     Next Articles

Sequence Divergence and Expression Specificity of the Starch Synthase Gene Family in Oryza officinalis Leaf

Ying Bao*, Jiaxiao Du, Xiang Jing, Si Xu   

  1. School of Life Sciences, Qufu Normal University, Qufu 273165, China
  • Received:2014-08-07 Accepted:2015-01-05 Online:2015-09-06 Published:2015-11-01
  • Contact: Bao Ying
  • About author:

    ? These authors contributed equally to this paper


Starch is produced by most green plants as an energy store and is also a major carbohydrate source in human diet. There are two stages of starch synthesis in most plants. In the first stage, transient starch is produced during photosynthesis, and in the second, the nutrition accumulation stage, starch is deposited for storage purposes. Although the first stage of starch synthesis plays a critical role in carbohydrate metabolism, starch biosynthesis in photosynthetic organs has received less attention. To detect the evolutionary patterns associated with starch synthase, the enzyme involved in the biosynthesis of starch, in plant photosynthetic organs, we used leaf transcriptome resequencing to investigate the genotype and expression divergence of the gene family in Oryza officinalis. Eight complete starch synthase genes were identified, and phylogenetic analyses confirmed that the genes were SSI, SSII, SIII, SSIV, SSV, and GSBBII. Comparison of sequences and expression quantities showed that the evolutionary patterns of the starch synthase family in O. officinalis were highly consistent with those of cultivated rice. The homologous sequence identities between the two species were 95% to 98% at the mRNA level. Further statistical tests based on the ratio of nonsynonymous to synonymous substitutions indicated that all eight genes were under significant purifying selection. In addition, three genes specifically expressed in the endosperm of cultivated rice were not found in the leaf transcriptome of O. officinalis. However, four genes with predominant expression in the leaves of cultivated rice showed relatively higher expression in the O. officinalis leaf transcriptome.

Table 1

Starch synthase genes in leaf transcriptome of Oryza officinalis"

Mapped reads 1 216 419 3 035 82 3 365 280 20 249 252 31 9 779
Gene length (bp) 1 883 2 256 2 073 - 3 663 4 653 - 2 754 2 115 - 1 827

Table 2

Homologous comparisons of the starch synthase genes between Oryza officinalis and O. sativa"

mRNA identities 96.4% 95.2% 95.5% 97.1% 96.4% 95.4% 95.2% 98.1%
Amino acid identities 96.9% 94.5% 93.1% 96.3% 94.1% 94.7% 93.6% 97.0%

Table 3

Amino acid sequence identities among the starch synthase genes in Oryza officinalis"

SSII1 41.3% - - - - - -
SSII2 41.8% 58.1% - - - - -
SSIII1 28.7% 23.6% 25.6% - - - -
SSIII2 28.1% 23.4% 26.0% 61.9% - - -
SSIV2 28.0% 24.2% 27.6% 28.9% 29.8% - -
SSV 20.4% 18.8% 20.6% 24.1% 24.3% 27.7% -
GBSSII 31.6% 34.4% 33.5% 26.9% 27.1% 28.6% 17.8%

Table 4

Gene substitutions between Oryza officinalis and O. sativa"

Sequence Method Ka Ks Ka/Ks P-value (Fisher)
SSI GY-HKY 0.009 0.079 0.112 6.75E-14**
SSII1 GY-HKY 0.026 0.114 0.225 1.46E-14**
SSII2 GY-HKY 0.035 0.062 0.560 6.95E-03**
SSIII1 GY-HKY 0.015 0.068 0.219 5.50E-14**
SSIII2 GY-HKY 0.027 0.076 0.358 2.37E-11**
SSIV2 GY-HKY 0.029 0.100 0.289 9.13E-12**
SSV GY-HKY 0.025 0.087 0.289 1.71E-08**
GBSSII GY-HKY 0.014 0.038 0.361 3.07E-03**
SSI NG 0.009 0.085 0.108 1.54E-13**
SSII1 NG 0.024 0.128 0.189 2.83E-16**
SSII2 NG 0.034 0.065 0.526 5.94E-03**
SSIII1 NG 0.015 0.069 0.215 3.33E-13**
SSIII2 NG 0.026 0.080 0.329 5.39E-12**
SSIV2 NG 0.029 0.101 0.285 6.06E-11**
SSV NG 0.024 0.095 0.255 2.00E-09**
GBSSII NG 0.013 0.041 0.315 8.70E-04**
SSI YN 0.009 0.076 0.116 1.54E-12**
SSII1 YN 0.026 0.110 0.233 1.18E-12**
SSII2 YN 0.034 0.062 0.558 1.47E-02**
SSIII1 YN 0.015 0.062 0.245 1.11E-11**
SSIII2 YN 0.027 0.070 0.389 4.50E-09**
SSIV2 YN 0.029 0.096 0.302 2.61E-10**
SSV YN 0.025 0.087 0.289 5.49E-08**
GBSSII YN 0.013 0.038 0.357 2.95E-03**

Figure 1

Phylogenetic relationships and relative expression level of the starch synthase gene family(A) The maximum likelihood tree of the starch synthase gene family based on amino acid homologous sequences of Arabidopsis thaliana, Oryza officinalis, O. sativa, and Zea mays (Numbers near the branches indicate bootstrap values); (B) Relative expression level of the starch synthase genes in O. officinalis."

[1] Ammiraju JSS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J, Fan CZ, Goicoechea JL, Zuccolo A, Chen JF, Bennetzen JL, Chen MS, Jackson S, Wing RA (2008). Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set.Plant Cell 20, 3191-3209.
[2] Brust H, Lehmann T, D'Hulst C, Fettke J (2014). Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin.PLoS One 9, e102364.
[3] Buléon A, Colonna P, Planchot V, Ball S (1998). Starch granules: structure and biosynthesis.Int J Biol Macromol 23, 85-112.
[4] Cao HP, Imparl-Radosevich J, Guan HP, Keeling PL, James MG, Myers AM (1999). Identification of the soluble starch synthase activities of maize endosperm.Plant Phy- siol 120, 205-216.
[5] Deschamps P, Moreau H, Worden AZ, Dauvillée D, Ball SG (2008). Early gene duplication within chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts.Genetics 178, 2373-2387.
[6] Dian WM, Jiang HW, Wu P (2005). Evolution and expression analysis of starch synthase III and IV in rice.J Exp Bot 56, 623-632.
[7] Fujita N (2014). Starch biosynthesis in rice endosperm.AGri-Biosci Monogr 4, 1-18.
[8] Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, Aihara S, Nakamura Y (2011). Starch biosynthesis in rice endosp- erm requires the presence of either starch synthase I or IIIa.J Exp Bot 62, 4819-4831.
[9] Gámez-Arjona FM, Li J, Raynaud S, Baroja-Fernández E, Munñoz FJ, Ovecka M, Ragel P, Bahaji A, Pozueta-Romero J, Mérida Á (2011). Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch.Plant Biotechnol J 9, 1049-1060.
[10] Garber M, Grabherr MG, Guttman M, Trapnell C (2011). Computational methods for transcriptome annotation and quantification using RNA-seq.Nat Methods 8, 469-477.
[11] Goldman N, Yang ZH (1994). A codon-based model of nucleotide substitution for protein-coding DNA sequences.Mol Biol Evol 11, 725-736.
[12] Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Mol Biol Evol 27, 221-224.
[13] Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Syst Biol 59, 307-321.
[14] Hirose T, Terao T (2004). A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.).Planta 220, 9-16.
[15] Jiang HW, Dian WM, Liu FY, Wu P (2004). Molecular cloning and expression analysis of three genes encoding starch synthase II in rice.Planta 218, 1062-1070.
[16] Langmead B, Salzberg SL (2012). Fast gapped-read align- ment with Bowtie 2.Nat Methods 9, 357-359.
[17] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools.Bioinformatics 25, 2078-2079.
[18] Lu F, Ammiraju JSS, Sanyal A, Zhang SL, Song RT, Chen JF, Li GS, Sui Y, Song X, Cheng ZK, de Oliveira AC, Bennetzen JL, Jackson SA, Wing RA, Chen MS (2009). Comparative sequence analysis of MONOCULM1-orthol- ogous regions in 14 Oryza genomes.Proc Natl Acad Sci USA 106, 2071-2076.
[19] Myers AM, Morell MK, James MG, Ball SG (2000). Recent progress toward understanding biosynthesis of the amylopectin crystal.Plant Physiol 122, 989-998.
[20] Nei M, Gojobori T (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions.Mol Biol Evol 3, 418-426.
[21] Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005). Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot 56, 3229-3244.
[22] Orzechowski S (2008). Starch metabolism in leaves.Acta Biochim Pol 55, 435-445.
[23] Schwarte S, Brust H, Steup M, Tiedemann R (2013). Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana.BMC Res Notes 6, 84.
[24] Stamova BS, Laudencia-Chingcuanco D, Beckles DM (2009). Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat.Int J Plant Genomics 2009, 407426.
[25] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nat Biotechnol 28, 511-515.
[26] Yang ZH, Nielsen R (2000). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models.Mol Biol Evol 17, 32-43.
[27] Zeeman SC, Kossmann J, Smith AM (2010). Starch: its metabolism, evolution, and biotechnological modification in plants.Annu Rev Plant Biol 61, 209-234.
[28] Zeeman SC, Smith SM, Smith AM (2007). The diurnal metabolism of leaf starch.Biochem J 401, 13-28.
[29] Zhang XL, Szydlowski N, Delvallé D, D'Hulst C, James MG, Myers AM (2008). Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis.BMC Plant Biol 8, 96.
No related articles found!
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .