植物学报 ›› 2019, Vol. 54 ›› Issue (4): 455-463.doi: 10.11983/CBB19044

所属专题: 逆境生物学专辑

• 研究报告 • 上一篇    下一篇

纳他霉素对芒果采后胶孢炭疽菌的抑菌效果及机理

刘佳怡1,王嘉欣1,宋海超2,张正科1,徐祥彬1,吉训聪3,*(),史学群1,*()   

  1. 1 海南大学食品学院, 海口 570228
    2 海南大学热带农林学院, 海口 570228
    3 海南省农业科学研究院植物保护研究所, 海口 571100
  • 收稿日期:2019-03-08 接受日期:2019-05-06 出版日期:2019-07-01 发布日期:2020-01-08
  • 通讯作者: 吉训聪,史学群 E-mail:757557113@qq.com;shixuequn@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0400904)

Antifungal Activity and Mechanisms of Natamycin Against Colletotrichum gloeosporioides in Postharvest Mango Fruit

Liu Jiayi1,Wang Jiaxin1,Song Haichao2,Zhang Zhengke1,Xu Xiangbin1,Ji Xuncong3,*(),Shi Xuequn1,*()   

  1. 1 College of Food Science and Technology, Hainan University, Haikou 570228, China
    2 Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
    3 Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou 571100, China
  • Received:2019-03-08 Accepted:2019-05-06 Online:2019-07-01 Published:2020-01-08
  • Contact: Ji Xuncong,Shi Xuequn E-mail:757557113@qq.com;shixuequn@163.com

摘要:

以纳他霉素为抑菌剂, 实验测定了离体条件下不同浓度纳他霉素对胶孢炭疽菌(Colletotrichum gloeosporioides)的孢子萌发及菌丝生长的抑制效果, 以及活体损伤接种炭疽病菌后, 纳他霉素对芒果(Mangifera indica)果实炭疽病的防治效果。通过测定纳他霉素处理后胶孢炭疽菌的细胞膜相对渗透率、可溶性蛋白含量、细胞膜完整性、孢子内活性氧水平和线粒体分布情况, 初步探明其抑菌机理。结果表明, 3 mg∙L -1纳他霉素可显著抑制胶孢炭疽菌孢子萌发、芽管伸长和菌落生长, 80 mg∙L -1纳他霉素可有效抑制芒果贮存过程中果实炭疽病斑的扩展。纳他霉素处理后胶孢炭疽菌细胞膜相对渗透率和可溶性蛋白含量增加; 2 mg∙L -1纳他霉素处理8小时, 处理组胶孢炭疽菌孢子细胞膜损伤染色率为33.6%, 对照组染色率为13.9%; 处理组胞内活性氧产生染色率达46.9%, 比对照组高39.7%; 同时观察到纳他霉素使胞内线粒体分布不均且荧光信号微弱。以上结果表明, 纳他霉素可以破坏胶孢炭疽病菌细胞膜, 诱导活性氧大量积累, 并降低线粒体活性, 从而干扰菌体正常生理活性, 使其代谢活动受影响, 从而达到抑菌目的。

关键词: 纳他霉素, 芒果, 胶孢炭疽病菌, 抑菌机理

Abstract:

In this study, we examined the inhibitory effects of natamycin at different concentrations on the conidial germination and mycelial growth of Colletotrichum gloeosporioides in vitro as well as the controlled effect of natamycin on postharvest anthracnose of mango (Mangifera indica) fruit inoculated with C. gloeosporioides. To further explore the underlying antifungal mechanism, we analyzed the membrane permeability, soluble protein content, changes in cell membrane integrity, intracellular reactive oxygen species (ROS) level and mitochondrial distribution in C. gloeosporioides after natamycin treatment. Natamycin at 3 mg∙L -1 effectively suppressed the conidial germination, germ tube elongation and mycelial growth of C. gloeosporioides. Also, 80 mg∙L -1natamycin significantly inhibited the expansion of anthracnose lesions in mango fruit during storage. Furthermore, natamycin treatment increased the relative permeability and soluble protein content in the cell membrane of C. gloeosporioides. After 8h treatment with natamycin 2 mg∙L -1, the staining rate of damaged cell membranes in C. gloeosporioides was 33.6% and 13.9% in the control. The staining rate of intracellular ROS reached 46.9% in treated conidia, which was 39.7% higher than that of the control. Natamycin treatment caused heterogeneous distribution of intracellular mitochondria along with weaker fluorescence as compared with the control. In summary, natamycin can destroy the cell membrane of C. gloeosporioides, induce ROS accumulation and reduce mitochondrial activity, thus interfering in the normal physiological activity of C. gloeosporioides and affecting its metabolic activities.

Key words: natamycin, mango, Colletotrichum gloeosporioides, antifungal mechanism

图1

纳他霉素对胶孢炭疽菌孢子萌发和芽管伸长的影响 (A) 孢子萌发显微图(Bars=50 μm); (B) 孢子萌发率; (C) 芽管长度。不同小写字母表示各处理组间差异显著(P<0.05)。"

图2

纳他霉素对胶孢炭疽菌菌丝生长的影响 (A) 菌落生长图(Bar=15 mm); (B) 菌落直径。不同小写字母表示各处理组间差异显著(P<0.05)。"

图3

纳他霉素对芒果采后炭疽病的影响 (A) 炭疽病发病情况(Bar=8 mm); (B) 炭疽病斑直径。不同小写字母表示各处理组间差异显著(P<0.05)。"

图4

纳他霉素对胶孢炭疽菌细胞膜透性和可溶性蛋白含量的影响 (A) 细胞膜相对渗透率; (B) 可溶性蛋白含量"

图5

纳他霉素对胶孢炭疽菌孢子细胞膜完整性的影响 (A) 荧光显微镜下碘化丙啶(PI)染色情况, 细胞膜受损的孢子呈红色荧光(Bars=50 μm); (B) PI染色率。不同小写字母表示各处理组间差异显著(P<0.05)。"

图6

纳他霉素对胶孢炭疽菌活性氧(ROS)含量的影响 (A) 荧光显微镜下DCFH-DA染色情况, 诱导活性氧产生的孢子呈绿色荧光(Bars=50 μm); (B) DCFH-DA染色率。不同小写字母表示各处理组间差异显著(P<0.05)。"

图7

纳他霉素对胶孢炭疽菌孢子内线粒体分布的影响 红色荧光处为线粒体聚集区(Bars=5 μm)。"

[1] 岑春艺, 黄正学, 李善登, 韦继光, 李良波, 黄荣韶 ( 2016). 西番莲提取物对三七炭疽病菌和黑斑病菌的抑制作用. 湖北农业科学 55, 912-915.
[2] 郭萌萌, 李志文, 张平, 农绍庄, 刘莉, 刘翔 ( 2013). 纳他霉素对葡萄采后灰霉病菌的毒力及其防腐保鲜效果. 食品与发酵工业 39(8), 226-232.
[3] 呼玉侠, 孙远功, 鲁来政, 李长锁 ( 2006). 纳他霉素在草莓防腐中的应用. 食品研究与开发 27(8), 170-172.
[4] 黄勤知, 余莎, 何红, 卢乃会 ( 2013). 红树内生细菌AiL3抗菌蛋白对杧果炭疽菌的抑制作用. 果树学报 30, 1016-1022.
[5] 姜爱丽, 胡文忠, 李慧, 田密霞, 范圣第 ( 2009). 纳他霉素处理对采后甜樱桃生理代谢及品质的影响. 农业工程学报 25, 351-356.
[6] 景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
[7] 石志琦, 沈寿国, 徐朗莱, 范永坚 ( 2004). 蛇床子素对植物病原真菌抑制机制的初步研究. 农药学学报 6(4), 28-32.
[8] 孙远功, 呼玉侠, 冯昕 ( 2006). 纳他霉素在柑桔防腐保鲜中的应用. 食品研究与开发 27(7), 190-192.
[9] 唐群勇 ( 2011). Fengycin对Rhizopus stolonifer作用机理研究. 硕士论文. 南京: 南京农业大学. pp. 1-68.
[10] Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS ( 2005). Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109, 150-158.
[11] Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J ( 2016). Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 100, 61-78.
[12] Aparicio JF, Mendes MV, Anton N, Recio E, Martin JF ( 2004). Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11, 1643-1656.
[13] Arroyo-López FN, Bautista-Gallego J, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A ( 2012). Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride. Int J Food Microbiol 155, 257-262.
[14] Avery SV ( 2011). Molecular targets of oxidative stress. Biochem 434, 201-210.
[15] Chan DC ( 2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
[16] Circu ML, Aw TY ( 2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48, 749-762.
[17] Fajardo P, Martins JT, Fuciños C, Pastrana L, Teixeira JA, Vicente AA ( 2010). Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of saloio cheese. J Food Eng 101, 349-356.
[18] Haack SE, Ivors KL, Holmes GJ, Förster H, Adaskaveg JE ( 2018). Natamycin, a new biofungicide for managing crown rot of strawberry caused by QoI-resistant Colletotrichum acutatum. Plant Dis 102, 1687-1695.
[19] He C, Zhang ZQ, Li BQ, Xu Y, Tian SP ( 2019). Effect of natamycin on Botrytis cinerea and Penicillium expansum-postharvest pathogens of grape berries and jujube fruit. Postharvest Biol Technol 151, 134-141.
[20] Hondrodimou O, Kourkoutas Y, Panagou EZ ( 2011). Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol 28, 621-627.
[21] Hu MJ, Yang DP, Huber DJ, Jiang YM, Li M, Gao ZY, Zhang ZK ( 2014). Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment. Postharvest Biol Technol 97, 115-122.
[22] Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ ( 2007). Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7, 106-118.
[23] Jongsri P, Rojsitthisak P, Wangsomboondee T, Seraypheap K ( 2017). Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of ‘Nam Dok Mai’ mango after harvest. Sci Hortic 224, 180-187.
[24] Kefialew Y, Ayalew A ( 2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango( Mangifera indica). Postharvest Biol Technol 50, 8-11.
[25] Lai TF, Li BQ, Qin GZ, Tian SP ( 2011). Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum. Curr Microbiol 62, 229-234.
[26] Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P ( 2012). Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduction 2012, 329635.
[27] Mehyar GF, Al Nabulsi AA, Saleh M, Olaimat AN, Holley RA ( 2017). Effects of chitosan coating containingly- sozyme or natamycin on shelf-life, microbial quality, and sensory properties of Halloumi cheese brined in normal and reduced salt solutions. J Food Process Pres 42, e13324.
[28] Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER ( 2018). Effects of essential oil vapour treatment on the postharvest disease control and different defence responses in two mango (Mangifera indica L.) cultivars. Food Bioprocess Tech 10, 1131-1141.
[29] Pipek P, Rohlík BA, Lojková A, Staruch L ( 2010). Suppression of mould growth on dry sausages. Czech Food Sci 28, 258-263.
[30] Shi XQ, Li BQ, Qin GZ, Tian SP ( 2012). Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol Technol 67, 138-143.
[31] Sivakumar D, Jiang Y, Yahia EM ( 2011). Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res Int 44, 1254-1263.
[32] te Welscher YM, Jones L, van Leeuwen MR, Dijksterhuis J, de Kruijff B, Eitzen G, Breukink E ( 2010). Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol. Antimicrob Agents Chemother 54, 2618-2625.
[33] Van Leeuwen MR, Golovina EA, Dijksterhuis J ( 2009). The polyene antimycotics nystatin and filipin disrupt the plasma membrane, whereas natamycin inhibits endocytosis in germinating conidia of Penicillium discolor. J Appl Microbiol 106, 1908-1918.
[34] Xu XB, Tian SP ( 2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biol Technol 49, 379-385.
[1] 朱竹;孟祥红;田世平*. 采前喷施草酸对芒果果实细胞钙含量和分布的影响[J]. 植物学报, 2010, 45(01): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈馥衡 范浚深. 新型切花保鲜剂氨氧基乙酸[J]. 植物学报, 1988, 5(02): 127 .
[2] 周广胜 邢雪荣 王辉民. 植被在全球气候变化中的作用[J]. 植物学报, 1995, 12(专辑2): 190 -194 .
[3] 周青 杨静 邵爱华 王雅玲. NaHSO3 对水稻幼苗根系生长及生理活性影响的研究[J]. 植物学报, 1998, 15(03): 51 -53 .
[4] 韩燕来 徐芳森 段海燕 石磊 王运华. 拟南芥养分离子转运蛋白研究进展[J]. 植物学报, 2003, 20(01): 23 -35 .
[5] 吴杰, 赵鑫, 宁伟. 东北地区蒲公英属瘦果微形态特征及其分类学意义[J]. 植物学报, 2011, 46(4): 437 -446 .
[6] 董淼, 黄越, 陈文铎, 徐涛, 郎秋蕾. 降解组测序技术在植物miRNA研究中的应用[J]. 植物学报, 2013, 48(3): 344 -353 .
[7] 夏奕生 邵廷富. 果实成熟的生理生化研究进展[J]. 植物学报, 1989, 6(01): 5 -8 .
[8] 种云霄, 于丹, 夏盛林, 康辉. 秦岭太白县水生—沼生植物区系地理的初步研究[J]. 植物生态学报, 1999, 23(199901): 28 -38 .
[9] 刘锺龄. 内蒙古的针茅草原[J]. 植物生态学报, 1963, (2): 156 -157 .
[10] 王琼, 廖咏梅. 林缘和荒草坡不同草本层盖度小生境中积雪草的等级可塑性[J]. 植物生态学报, 2007, 31(4): 576 -587 .