植物学报 ›› 2015, Vol. 50 ›› Issue (3): 321-330.doi: 10.3724/SP.J.1259.2015.00321

• 研究报告 • 上一篇    下一篇

利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因

吕艳艳, 付三雄, 陈松, 张唯, 戚存扣*   

  1. 江苏省农业科学院经济作物研究所, 南京 210014
  • 收稿日期:2014-05-05 修回日期:2014-08-25 出版日期:2015-05-01 发布日期:2015-04-08
  • 通讯作者: qckjaas@gmail.com
  • 基金资助:
    油菜产业技术体系(CARS-13)和科技部支撑计划(No.2010BAD01B10)

RNA-sequencing Analysis of Differentially Expressed Genes in Wild-type and BnERF-transgenic Arabidopsis Under Submergence Treatment

Yanyan Lü, Sanxiong Fu, Song Chen, Wei Zhang, Cunkou Qi*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-05-05 Revised:2014-08-25 Online:2015-05-01 Published:2015-04-08

摘要: 为探究淹水胁迫下BnERF调节的耐淹防御相关途径, 应用RNA-seq技术, 对淹水6小时后的拟南芥(Arabidopsis thaliana)野生型(WT)和转BnERF株系(E33)幼苗进行基因表达分析。结果表明, 淹水3天后, E33表现出较强的耐淹性, 地上部生长状况和根系发育均明显强于野生型。E33幼苗未淹水处理时相对于野生型单独上调的基因有9个, 4个为膜结合蛋白, 其中2个参与MAPK级联途径, 其它5个参与氧化胁迫及水分调节途径; 与未淹水野生型相比, 无论是未淹水处理还是淹水6小时后的E33幼苗中缺氧响应、抗氧化防护及细胞、器官发育相关基因的表达量均上调。另外, 淹水6小时后E33的差异基因并未完全覆盖淹水6小时后野生型的差异基因; E33幼苗中缺氧响应、氧化胁迫响应、能量的产生与转变、乙醇代谢途径中的基因以及乙烯响应因子基因的表达量都明显高于野生型。上述结果表明, BnERF直接或间接调节植物的淹水胁迫相关生理代谢途径, 参与淹水胁迫的防御过程。

Abstract: RNA-sequencing (RNA-seq) was used to analyze differential gene expression in the wild-type (WT) and BnERF-transgenic Arabidopsis (E33) after 6 h submergence treatment to find pathways involved in defense against submergence treatment regulated by BnERF. E33 showed more tolerance with stronger shoot and root growth than the WT under 3 d submergence. Nine genes were specifically upregulated in E33 without submergence treatment as compared with the WT. Four genes encoded membrane-bound proteins and two of these participated in the mitogen-activated protein kinase cascade; the other five were involved in oxidative stress and water regulatory pathways. Genes responsive to hypoxia, antioxidant defense and plant development were upregulated in E33 under the control condition or 6 h submergence as compared with the WT without submergence treatment. As compared with the WT, differently expressed genes in E33 did not significantly overlap with the WT when both were treated for 6 h submergence. Furthermore, genes responsive to hypoxia, oxidative stress, production and transformation of energy, and ethanol metabolic pathways as well as ethylene response factor genes showed higher expression level in E33 than that in the WT, so these pathways are regulated by BnERF directly or indirectly to participate in defense against submergence stress.

1 肖文娟, 宾金华, 武波 (2004). 植物体中的MAPK. 植物学通报 21, 205-215.
2 张计育, 王庆菊, 郭忠仁 (2012). 植物AP2/ERF类转录因子研究进展. 遗传 34, 835-847.
3 Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010). Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35, 49-62.
4 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Selina S, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000). Gene ontology: tool for the unification of biology. Nat Genet 25, 25-29.
5 Cao YF, Song FM, Goodman RM, Zheng Z (2006). Molecular characterization of four rice genes encoding ethy- lene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163, 1167-1178.
6 Christianson JA, Liewellyn DJ, Dennis ES, Wilson IW (2010). Global gene expression responses to waterlogging in roots and leaves of cotton ( Gossypium hirsutum L.). Plant Cell Physiol 51, 21-37.
7 Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J 16, 735-743.
8 Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000). Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51, 89-97.
9 Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404.
10 Fukao T, Bailey-Serres J (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105, 16814-16819.
11 Fukao T, Xu KN, Ronald PC, Bailey-Serres J (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18, 2021- 2034.
12 Grichko VP, Glick BR (2001). Ethylene and flooding stress in plants. Plant Physiol Bioche 39, 1-9.
13 Jackson MB, Colmer TD (2005). Response and adaptation by plants to flooding stress. Ann Bot 96, 501-505.
14 Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127, 910-917.
15 Jung KH, Seo YS, Walia H, Cao PJ, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC (2010). The submergence tolerance regulator Sub1A mediates stress- responsive expression of AP2 / ERF transcription factors. Plant Physiol 152, 1674-1692.
16 Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P (2009). Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J 60, 974-982.
17 Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010). HRE1 and HRE2 , two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana . Plant J 62, 302-315.
18 Nakano T, Suzuki K, Fujimura T, Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140, 411-432.
19 Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003). A MAPK pathway mediates ethylene signaling in plants. EMBO J 22, 1282-1288.
20 Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012). Identification of differentially expressed genes in cucumber ( Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99, 160-168.
21 Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Bioph Res Co 290, 998-1009.
22 Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005). The effect of overexpression of two Brassica CBF / DREB1 -like trans- cription factors on photosynthetic capacity and freezing tolerance in Brassica napus . Plant Cell Physiol 46, 1525- 1539.
23 Steinwand BJ, Kieber JJ (2010). The role of receptor-like kinases in regulating cell wall function. Plant Physiol 153, 479-484.
24 Wu LJ, Zhang ZJ, Zhang HW, Wang XC, Huang RF (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148, 1953-1963.
25 Xiong AS, Jiang HH, Zhuang J, Peng RH, Jin XF, Zhu B, Wang F, Zhang J, Yao QH (2013). Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol Biotechnol 53, 198-206.
26 Xu KN, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006). Sub1A is an ethylene-response- factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.
27 Zhang GY, Chen M, Chen XP, Xu ZS, Guan S, Li LC, Li AL, Guo JM, Mao L, Ma YZ (2008). Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean ( Glycine max L.). J Exp Bot 59, 4095-4107.
28 Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006). Regulating the drought-responsive element (DRE)- mediated signaling pathway by synergic functions of trans -active and trans -inactive DRE binding factors in Brassica napus . J Biol Chem 281, 10752-10759.
29 Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011). Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum . Mol Biol Rep 38, 745-753.
30 Zou XL, Tan XY, Hu CW, Zeng L, Lu GY, Fu GP, Cheng Y, Zhang XK (2013). The transcriptome of Brassica napus L. roots under waterlogging at the seedling stage. Int J Mol Sci 14, 2637-2651.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于凤兰 王静萍 李京民 单雪琴. 乌桕桕脂中甾醇和其他成分分离鉴定[J]. 植物学报, 1989, 6(02): 121 -123 .
[2] 李爱芬 陈敏 周百成. 褐藻光合作用色素—蛋白质复合物——研究进展和问题[J]. 植物学报, 1999, 16(04): 365 -371 .
[3] 陈晓梅 郭顺星. 植物抗病性物质的研究进展[J]. 植物学报, 1999, 16(06): 658 -664 .
[4] 李继泉 金幼菊 沈应柏 洪蓉. 环境因子对植物释放挥发性化合物的影响[J]. 植物学报, 2001, 18(06): 649 -656 .
[5] (王伟杰和徐昌杰编译). 天然类胡萝卜素胭脂树素的生物合成[J]. 植物学报, 2005, 22(增刊): 157 .
[6] 李建霞, 张出兰, 夏晓飞, 赵良成. 植物冰冻切片条件的优化及其与石蜡切片在组织化学应用中的比较[J]. 植物学报, 2013, 48(6): 643 -650 .
[7] 蒋样明, 崔伟宏, 董前林. 基于空间技术的烤烟种植生态环境综合评价分析[J]. 植物生态学报, 2012, 36(1): 47 -54 .
[8] 胡承彪, 朱宏光, 韦源连. 不同生态地理区域杉木人工林土壤微生物及生化活性的研究[J]. 植物生态学报, 1991, 15(4): 303 -311 .
[9] 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231 -242 .
[10] 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389 -401 .