植物学报 ›› 2014, Vol. 49 ›› Issue (4): 469-482.doi: 10.3724/SP.J.1259.2014.00469

• 专题论坛 • 上一篇    下一篇

拟南芥开花时间调控的分子基础

张艺能, 周玉萍, 陈琼华, 黄小玲, 田长恩*   

  1. 广州大学生命科学学院, 植物抗逆基因功能研究广州市重点实验室, 广州 510006
  • 收稿日期:2013-10-18 修回日期:2014-03-26 出版日期:2014-07-01 发布日期:2014-08-08
  • 通讯作者: 田长恩 E-mail:changentian@aliyun.com
  • 基金资助:

    国家自然科学基金;广东省自然科学基金;羊城学者科研项目

Molecular Basis of Flowering Time Regulation in Arabidopsis

Yineng Zhang, Yuping Zhou, Qionghua Chen, Xiaoling Huang, Chang’en Tian*   

  1. Guangzhou Key Laboratory for Functional Study on Stress-Resistant Genes in Plants, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
  • Received:2013-10-18 Revised:2014-03-26 Online:2014-07-01 Published:2014-08-08
  • Contact: Chang’en Tian E-mail:changentian@aliyun.com

摘要: 在合适的时间开花对大多数植物的生存和成功繁衍极为重要。开花时间受错综复杂的环境因素和植物自身的遗传因子影响, 由开花调控因子所构成的光周期、春化、温度、赤霉素、自主以及年龄等至少6条既相互独立又相互联系的遗传途径调控。该文综述了有关拟南芥(Arabidopsis thaliana)开花时间调控的分子机制的最新研究进展, 并对今后的研究进行了展望。

Abstract: Flowering time is crucial for most plants to successfully survive and reproduce. Both environmental and genetic factors can regulate flowering time. The flowering regulators consist of at least 6 closely interlinked but divergent genetic regulation pathways, including photoperiod, vernalization, ambient temperature, gibberellic acid and autonomous pathways. This review summarizes the research progress in the molecular basis of flowering time regulation in Arabidopsis and prospects for future study.


田素波,郭春晓,郑成淑 (2010). 光周期诱导植物成花的分子调控机制. 园艺学报 37, 325–330.
孙丽,徐启江 (2009). 高等植物开花诱导途径信号整合的分子机制. 生物技术通讯 20, 885–890.
孙昌辉,邓晓建,方军,储成才 (2007). 高等植物开花诱导研究进展. 遗传 29, 1182–1190.
张素芝,左建儒 (2006). 拟南芥开花时间调控的研究进展. 生物化学与生物物理研究进展 33, 301–309.
房迈莼,王小菁,李洪清 (2005). 光对植物生物钟的调节. 植物学通报 22 , 207–214.
罗睿,郭建军 (2010). 植物开花时间: 自然变异与遗传分化. 植物学报 45, 109–118.
徐雷,贾飞飞,王利琳 (2011). 拟南芥开花诱导途径分子机制研究进展. 西北植物学报 31, 1057–1065.
曾群,赵仲华,赵淑清 (2006). 植物开花时间调控的信号途径. 遗传28, 1031–1036.
雍伟东,种康,许智宏,谭克辉,朱至清 (2000). 高等植物开花时间决定的基因调控研究 45, 455–466.
Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol 143, 1163–1172.
Alvey L, Harberd NP (2005). DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123, 153–160.
Fu X, Harberd NP (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743.
Gendall AR, Levy YY, Wilson A, Dean C (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525–535.
Hornyik C, Terzi LC, Simpson GG (2010). The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18, 203–213.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.
Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd N (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104, 6484–6489.
Achard P, Herr A, Baulcombe DC, Harberd NP (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365.
Achard P,Genschik P (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of experimental botany 60, 1085–1092.
Amador V, Monte E, García–Martínez JL, Prat S (2001). Gibberellins signal nuclear import of PHOR1, a photoperiod–responsive protein with homology to Drosophila armadillo. Cell 106, 343–354.
An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Pi?iro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615–3626.
Aukerman MJ, Lee I, Weigel D, Amasino RM (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18, 195–203.
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2, e106.
Bázquez MA, Soowal LN, Lee I, Weigel D (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835–3844.
Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH (2009). SET DOMAIN GROUP 25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of ?owering. Plant Physiol 151, 1476–1485.
Blázquez MA, Ahn JH, Weigel D (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33, 168–171.
Blázquez MA, Soowal LN, Lee I, Weigel D (1997). LEAFY expression and ?ower initiation in Arabidopsis. Development 124, 3835–3844.
Blázquez MA, Weigel D (2000). Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892.
Bond DM, Dennis ES, Pogson BJ, Finnegan EJ (2009). Histone acetylation VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Mol Plant 2, 724–737.
Cao R, Zhang Y (2004). The functions of E(Z)/EZH2-mediatedmethylation of lysine 27 in histone H3. Curr Opin Genet Dev 14, 155–164.
Cardon G, H?hmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999). Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237, 91–104.
Cardon GH, H?hmann S, Nettesheim K, Saedler H, Huijser P (1997). Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12, 367–377.
Choi K, Kim S, Kim SY, Kim M, Hyun Y, Lee H, Choe S, Kim SG, Michaels S, Lee I (2005). SUPPRESSOR OF FRIGIDA 3 encodes a nuclear ACTIN-RELATED PROTEIN 6 required for ?oral repression in Arabidopsis. Plant Cell 17, 2647–2660.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316,1030–1033.
De Lucia F, Crevillen P, Jones AME, Greb T, Dean C (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105, 16831–16836.
Deal RB, Kandasamy MK, McKinney EC, Meagher RB (2005). The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of ?owering in Arabidopsis. Plant Cell 17, 2633–2646.
Delk NA, Johnson KA, Chowdhury NI, Braam J (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139, 240–253.
Dennis ES,Peacock WJ (2007). Epigenetic regulation of flowering.Current opinion in plant biology 10, 520–527.
Devlin PF, Kay SA (2000). Cryptochromes and phytochromes are required for phytochrome signalling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2509.
Eriksson S, B?hlenius H, Moritz T, Nilsson O (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172–2181.
Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P, Caflisch A, Gruissem W, Kohler C, Hennig L (2009). The chromodomain of LIKE HETEROCHROMATIN PROTEIN1 is essential for H3K27me3 binding and function during Arabidopsis development. PLoS One 4, e5335.
Finnegan EJ, Dennis ES (2007). Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17, 1978–1983.
Fornara F, Panigrahi K, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17, 75–86.
Galv?o VC,Horrer D,Küttner F,Schmid M (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139, 4072–4082.
Geraldo N, B?urle I, Kidou S, Hu X, Dean C (2009). FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol 150, 1611–1618.
Gocal GFW, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001). GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127, 1682–1693.
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z, Powers S, Gong F, Phillips A, Hedden P, Sun T, Thomas S (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18, 3399–3414.
Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33, 875–885.
Hartmann U, H?hmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000). Molecular cloning of SVP: a negative regulator of the ?oral transition in Arabidopsis. Plant J 21, 351–360.
He Y, Michaels SD, Amasino RM (2003). Regulation of ?owering time by histone acetylation in Arabidopsis. Science 302, 1751–1754.
Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltrán JP, Rameau C, Weller JL (2005). Conservation of Arabidopsis ?owering genes in model legumes. Plant Physiol 137, 1420–1434.
Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46, 183–192.
Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331 76–79.
Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21, 4327–4337.
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005). FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293–297.
Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306.
Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27, 1277–1288.
Jarillo JA Capel J, Tang RH, Yang HQ (2001). An Arabidopsis circadian clock component interacts with both CRY1 and PHYB. Nature 410, 487–490.
Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347.
Kim JJ, Lee JH, Kim W, Jung HS, Huijser P, Ahn JH (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol 159, 461–478.
Kim S, Choi K, Park C, Hwang HJ, Lee I (2006). SUPPRESSOR OF FRIGIDA4, encoding a C2H2-type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 18, 2985–2998.
Kim S, Soltis PS, Wall K, Soltis DE (2006). Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23, 107–120.
King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001). Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127, 624–632.
Komeda Y (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55, 521–535.
Koornneef M, Blankestijn-de Vries H, Hanhart C, Soppe W, Peeters T (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J 6, 911–919.
Kumar SV, Wigge PA (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147.
Laubinger S, Hoecker U (2003). The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light. Plant J 35, 373–385.
Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133, 3213–3222.
Le Corre V, Roux F, Reboud X (2002). DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol. Biol. Evol. 19 1261–1271.
Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75–83.
Lee J, Oh M, Park H, Lee I (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55, 832–843.
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007). Role of SVP in the control of ?owering time by ambient temperature in Arabidopsis. Genes Dev 21, 397–402.
Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243–246.
Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell C, Ito T, Meyerowitz E, Yu H (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15, 110–120.
Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell C, Ito T, Meyerowitz E, Yu H (2008). A repressor complex governs the integration of ?owering signals in Arabidopsis. Dev Cell 15, 110–120.
Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Hong CB, Kim HJ, Park CM (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731–740.
Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481–1491.
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010). Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327, 94–97.
Liu F, Quesada V, Crevillén P, B?urle I, Swiezewski S, Dean C (2007). The Arabidopsis RNA-binding protein FCA requires a lysine-speci?c demethylase 1 homolog to downregulate FLC. Mol Cell 28, 398–407.
Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008). COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20, 292–306.
Liu XL, Michael F, Covington D, Wagner R (2001). ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant cell 13, 1293–1304.
Lu FL, Li GL, Cui X, Liu CY, Wang XJ, Cao XF (2008). Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Int Plant Biol 50, 886–896.
Más P, Kim WY, Somers DE, Kay SA (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567–570.
McWatters HG, Bastow RM, Hall A, Millar AJ (2000). The ELF3 gene regulates light signaling to the circadian clock. Nature, 408, 716–720.
Michaels SD, Amasino RM (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949–956.
Michaels SD, Amasino RM (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935–941.
Monte E, Alonso JM, Ecker JR, Zhang YL, Li X, Young J, Austin-Phillips S, Quail PH (2003). Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15, 1962–1980.
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35, 613–623.
Morris K, Thornber S, Codrai L, Richardson C, Craig A, Sadanandom A, Thomas B, Jackson S (2010). DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days. Plant Cell 22, 1118–1128.
Mouradov A,Cremer F,Coupland G (2002). Control of flowering time interacting pathways as a basis for diversity. The Plant Cell Online 14, S111–-S130.
Mulekar JJ, Bu QY, Chen FL, Huq E (2012). Casein kinase II a subunits affect multiple developmental and stress-responsive pathways in Arabidopsis. Plant J 69, 343–354.
Nelson DC, Lasswell J, Rogg LE Cohen MA, Bartel B (2000). FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340.
Ni M, Tepperman JM, Quail PH (1999). Binding of phytochrome B to its nuclear signaling partner PIE3 is reversibly induced by light. Nature 400, 781–784.
Noh B, Lee SH, Kim HJ, Yi G, Shin EA, Lee M, Jung KJ, Doyle MR, Amasino RM, Noh YS (2004). Divergent roles of a pair of homologous jumonji/zinc-?nger-class transcription factor proteins in the regulation of Arabidopsis ?owering time. Plant Cell 16, 2601–2613.
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–263.
Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12, 1484–1495.
Pien S, Fleury D, Mylne, JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008). ARABIDOPSIS TRITHORAX 1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20, 580–588.
Quesada V, Macknight R, Dean C, Simpson GG (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22, 3142–3152.
Richter R, Behringer C, Müller IK, Schwechheimer C (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24, 2093–2104.
Samach A, Wigge PA (2005). Ambient temperature perception in plants. Curr Opin Plant Biol 8, 483–486.
Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261–265.
Sch?fer E and Nagy F (2006). Photomorphogenesis in plant and bacteria (3rd ed), Dordrecht: Springer,
Schepens I, Duek P, Fankhauser C (2004). Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol 7, 564–569.
Schl?ppi M, Patel M (2001). Biennialism and vernalization promoted ?owering in Hyoscyamus niger: a comparison with Arabidopsis. Flower Newsl 31, 25–32.
Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427–1436.
Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25, 4638–4649.
Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20, 898–912.
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999). The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458.
Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006). The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48, 390–402.
Simpson GG (2004). The autonomous pathway: epigenetic and posttranscriptonal gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol 7, 570–574.
Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003). FY is an RNA3′ end-processing factor that interacts with FCA to control the Arabidopsis ?oral transition. Cell 113, 777–787.
Somers DE, Schultz TF, Milnamow M, Kay SA (2000). ZEITLUPE, a novel clock associated PAS protein from Arabidopsis. Cell 101, 319–329.
Srikanth A, Schmid M (2011). Regulation of flowering time: all roads lead to Rome. Cell. Mol. Life. Sci. 68, 2013–2037.
Sun TP, Goodman HM, Ausubel FM (1992). Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4, 119–128.
Sung S, Amasino RM (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164.
Swiezewski S, Liu F, Magusin A, Dean C (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462, 799–802.
Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003). Reciprocal control of ?owering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J 1, 361–369.
Tamada Y, Yun JY, Woo SC, Amasino RM (2009). ARABIDOPSIS TRITHORAX-RELATED 7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21, 3257–3269.
Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. P Natl Acad Sci USA 98, 9437–9442.
Tóth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001). Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127, 1607–1616.
Tsai YC, Delk NA, Chowdhury NI, Braam J (2007). Arabidopsis potential calcium sensors regulate Nitric Oxide levels and the transition to flowering. Plant Signal Behav 2, 446–454.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006.
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M (2013). Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339, 704–707.
Wang CX, Tian Q, Hou ZL, Mucha M, Aukerman M, Olsen OA (2007). The Arabidopsis thaliana ATPRP39-1 gene, encoding a telratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time. Plant Cell Rep 26, 1357–1366.
Wang JW, Czech B, Weigel D (2009). miR156-regulated SPL transcription factors de?ne an endogenous ?owering pathway in Arabidopsis thaliana. Cell 138, 738–749.
Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani MC (2009). PEP1 regulates perennial ?owering in Arabis alpina. Nature 459, 423–427.
Wellmer F, Riechmann JL (2010). Gene networks controlling the initiation of flower development. Trends in genetics 26, 519–527.
Wigge P, Kim M, Jaeger K, Busch W, Schmid M, Lohmann J, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.
Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann E, Maier A, Schwechheimer C (2007). The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19,1209–1220.
Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006). The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103, 14631–14636.
Yamaguchi A, Abe M (2012). Regulation of reproductive development by non-coding RNA in Arabidopsis: to ?ower or not to ?ower. J Plant Res 125, 693–704.
Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005). TWIN SISTER OF FT (TSF) acts as a ?oral pathway integrator redundantly with FT. Plant Cell Physiol 46, 1175–1189.
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a ?owering repressor down-regulated by vernalization. Science 303, 1640–1644.
Yang HC, Han ZF, Cao Y, Fan D, Li H, Mo HX, Feng Y, Liu L, Wang Z, Yue YL, Cui SJ, Chen S, Chai JJ, Ma LG (2012). A companion cell-dominant and developmentally-regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PloS Genet 8, e1002664.
Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C (2008). Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407, 1–11.
Yu H, Xu Y, Tan EL, Kumar PP (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA 99, 16336–16341.
Yun JY, Tamada Y, Kang YE, Amasino RM (2012). ARABIDOPSIS TRITHORAX-RELATED 3/ SET DOMAIN GROUP 2 is required for the winter-annual habit of Arabidopsis thaliana. Plant Cell Physiol 53, 834–846.
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007). Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5, e129.
Zhu Y, Zhao HF, Ren GD, Yu XF, Cao SQ, Kuai BK (2005). Charaterization of a novel developmentally retarded mutant (drm1) associated with the autonomous flowering pathway in Arabidopsis. Cell Research 15, 133–140.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 常永健 陈四维 马宝焜. 苹果试管苗移栽前后光合特性的初步研究 简报[J]. 植物学报, 1991, 8(02): 55 -56 .
[2] 王文龙 陈苏 朱果利 陈珈 王学臣. 植物细胞壁伸展测定仪在蚕豆扩张蛋白特性研究中的应用[J]. 植物学报, 2004, 21(03): 312 -318 .
[3] 谭祖猛;李云昌;胡琼*;梅德圣;程计华. 分子标记在油菜杂种优势利用中的研究进展[J]. 植物学报, 2008, 25(02): 230 -239 .
[4] 张萍 白学良 钟秀丽. 苔藓植物耐旱机制研究进展[J]. 植物学报, 2005, 22(01): 107 -114 .
[5] 陈玉玲. 腐植酸对植物生理活动的影响[J]. 植物学报, 2000, 17(01): 64 -72 .
[6] 黎盛臣 文丽珠 张凤琴 罗方梅 杨美容 张映祝 黄德藩. 抗寒抗病葡萄新品种——北醇[J]. 植物学报, 1983, 1(02): 28 -30 .
[7] 韩兴国 黄建辉 娄治平. 关键种概念在生物多样性保护种中的意义与存在的问题[J]. 植物学报, 1995, 12(专辑2): 168 -184 .
[8] 刘向东 徐是雄 卢永根. 水稻胚囊受精前中央细胞发育过程超微结构的观察[J]. 植物学报, 1996, 13(专辑): 102 .
[9] 李振宇. 长芒苋——中国苋属一新归化种[J]. 植物学报, 2003, 20(06): 734 -735 .
[10] 宋健. 宋健同志在呼吁书上的批示[J]. 植物学报, 1995, 12(专辑): 5 .