植物学报 ›› 2020, Vol. 55 ›› Issue (3): 308-317.doi: 10.11983/CBB19231

• 研究报告 • 上一篇    下一篇

森林生态系统细根周转规律及影响因素

赵佳宁1,梁韵2,柳莹3,王玉珏1,杨倩茹1,肖春旺1,*()   

  1. 1中央民族大学生命与环境科学学院, 北京 100081
    2中国科学院植物研究所, 植被与环境变化国家重点实验室, 北京 100093
    3西安科技大学测绘科学与技术学院, 西安 710054
  • 收稿日期:2019-11-29 接受日期:2020-02-26 出版日期:2020-05-01 发布日期:2020-07-06
  • 通讯作者: 肖春旺 E-mail:cwxiao@muc.edu.cn
  • 基金资助:
    国家自然科学基金(31770501);国家自然科学基金(31370462);中央民族大学理工科拔尖创新人才培养实验班项目;国家大学生创新创业训练计划(GCCX2019110017)

Patterns and Influence Factors of Fine Root Turnover in Forest Ecosystems

Jianing Zhao1,Yun Liang2,Ying Liu3,Yujue Wang1,Qianru Yang1,Chunwang Xiao1,*()   

  1. 1College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
    2State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
  • Received:2019-11-29 Accepted:2020-02-26 Online:2020-05-01 Published:2020-07-06
  • Contact: Chunwang Xiao E-mail:cwxiao@muc.edu.cn

摘要:

根系周转是陆地生态系统碳循环的关键过程, 对研究土壤碳库变化及全球气候变化均具有重要意义。然而由于根系周转率的测量计算方法较多, 不同方法得出的结果差异较大, 且目前对全球区域尺度上森林生态系统根系周转的研究还不够充分, 使得全球森林生态系统根系周转变化规律仍不清楚。该研究通过收集文献数据并统一周转率计算方法, 对全球5种森林类型的细根周转空间格局进行整合, 同时结合土壤理化性质和气候数据, 得出影响森林生态系统细根周转的因子。结果表明, 不同森林类型细根周转率存在显著差异, 且随着纬度的升高逐渐降低; 森林生态系统细根周转率与年平均温度和年平均降水量呈正相关; 森林生态系统细根周转率与土壤有机碳含量呈正相关但与土壤pH值呈负相关。该研究为揭示森林生态系统细根周转规律及机制提供了科学依据。

关键词: 细根周转, 全球森林尺度, 气候因子, 土壤性质

Abstract:

Root turnover is a key process in the carbon cycle of terrestrial ecosystems, and plays an important role in studying soil carbon pool changes and global climate change. Various methods for measuring root turnover rate have been described, from which highly variable results are obtained. Moreover, the studies on root turnover in large regional scales are not sufficient, making the patterns of root turnover in global forest ecosystem still not clear. This study integrates the fine root turnover spatial pattern of five forest types in the world by collecting literature data and unifying the calculation method of turnover rate. Combined with soil physical and chemical properties and climate data, several factors driving the fine root turnover of forest ecosystems are obtained. We show that there was a significant difference in the different forest ecosystems and the fine root turnover rate almost decreased with the increase of latitude. The fine root turnover rate of forest ecosystems was positively correlated to the mean annual temperature and the mean annual precipitation. The fine root turnover rate of forest ecosystems was positively correlated to the soil organic carbon content but negatively correlated to soil pH. This study provides a model to study the fine root turnover laws and mechanisms of forest ecosystems.

Key words: fine root turnover, global forest scale, climate factor, soil properties

表1

研究样点的分布(数据来源见附录1)"

Plot Continent Country Longitude and latitude Plot Continent Country Longitude and latitude
1 Asia India 77°15'E, 8°28'59"N 36 Asia China 128°5'40.56"E, 42°23'57.48"N
2 Asia India 76°49'59"E, 9°22'1"N 37 Asia China 128°4'59.88"E, 42°24'N
3 Asia India 77°25'58.8"E, 9°31'58.8"N 38 Asia China 128°6'29.16"E, 42°25'15.24"N
4 Asia India 79°55'1.2"E, 12°10'58.8"N 39 Asia China 128°30'E, 43°4'58.8"N
5 Asia China 110°31'19.2"E, 20°1'1.2"N 40 Asia China 127°31'48"E, 44°22'48"N
6 Asia China 112°49'58.8"E, 22°34'1.2"N 41 Asia China 88°13'48"E, 44°37'12"N
7 Asia China 117°18'E, 23°35'24"N 42 Asia Japan 142°6'E, 45°3'N
8 Asia India 91°55'58.8"E, 25°34'1.2"N 43 Asia China 128°53'13.2"E, 47°10'51.6"N
9 Asia China 117°57'E, 26°28'1.2"N 44 Asia China 127°54'36"E, 47°13'48"N
10 Asia China 110°7'58.8"E, 27°9'N 45 North America Panama 82°15'W, 8°45'N
11 Asia China 119°10'48"E, 27°52'12"N 46 North America Puerto Rico 65°49'1.2"W, 18°40'1.2"N
12 Asia China 113°1'48"E, 28°7'12"N 47 North America USA 84°30'W, 31°15'N
13 Asia China 91°19'58.8"E, 29°40'1.2"N 48 North America USA 92°W, 32°N
14 Asia China 121°46'58.8"E, 29°48'N 49 North America USA 111°45'W, 35°16'1.2"N
15 Asia China 103°25'1.2"E, 29°58'58.8"N 50 North America USA 76°27'43.2"W, 36°31'58.8"N
16 Asia China 102°48'E, 30°1'1.2"N 51 North America USA 82°22'1.2"W, 39°10'58.8"N
17 Asia China 117°24'E, 30°22'12"N 52 North America USA 78°45'57.6"W, 41°35'52.8"N
18 Asia China 117°43'48"E, 30°22'48"N 53 North America USA 72°11'24"W, 42°31'51.6"N
19 Asia India 79°56'24"E, 30°28'58.8"N 54 North America USA 71°45'W, 43°55'58.8"N
20 Asia China 117°53'24"E, 30°34'48"N 55 North America USA 72°13'1.2"W, 44°N
21 Asia China 117°54'E, 30°34'48"N 56 North America USA 122°13'1.2"W, 44°13'58.8"N
22 Asia China 121°54'25.2"E, 30°52'55.2"N 57 North America USA 121°34'1.2"W, 44°25'58.8"N
23 Asia India 75°40'12"E, 30°54'N 58 North America USA 68°41'6"W, 44°55'19.2"N
24 Asia China 119°13'58.8"E, 31°58'58.8"N 59 North America USA 122°W, 46°N
25 Asia Japan 131°12'E, 32°3'N 60 North America Canada 89°28'58.8"W, 49°32'24"N
26 Asia China 108°7'58.8"E, 33°58'1.2"N 61 Europe Italy 14°33'E, 41°43'1.2"N
27 Asia Japan 135°37'1.2"E, 34°4'58.8"N 62 Europe France 3°49'4.8"E, 43°41'16.8"N
28 Asia China 116°49'58.8"E, 35°52'58.8"N 63 Europe France 4°37'48"E, 49°45'36"N
29 Asia Japan 104°7'55.2"E, 36°N 64 Europe Germany 10°26'2.4"E, 51°4'48"N
30 Asia Japan 140°13'1.2"E, 36°6'N 65 Europe Belgium 3°51'E, 51°6'N
31 Asia Korea 127°42'E, 37°30'N 66 Europe Estonia 26°45'E, 58°46'1.2"N
32 Asia China 112°31'1.2"E, 37°39'N 67 Europe Finland 30°58'1.2"E, 62°46'58.8"N
33 Asia China 115°25'8.4"E, 39°57'N 68 South America Brazil 56°58'59"W, 3°4'1"S
34 Asia China 87°51'25.2"E, 40°27'57.6"N 69 South America Brazil 47°56'56"W, 1°17'53"S
35 Asia China 117°15'E, 42°19'12"N 70 Africa C?te d'Ivoire 5°13'1.2"W, 6°16'59"N

图1

森林生态系统的细根周转率与纬度格局 **表示在0.01水平显著相关。"

表2

不同森林类型的细根周转率"

Forest type Data number Means ± SE
Tropical rainforest 11 1.312±0.182 a
Subtropical evergreen broad-leaved forest 9 0.802±0.161 b
Warm temperate deciduous broad-leaved forest 13 0.724±0.859 b
Temperate coniferous and broad-leaved mixed forest 30 0.766±0.995 b
Cold temperate coniferous forest 7 0.602±0.106 b

图2

森林生态系统细根周转率与年平均温度(A)和年平均降水量(B)的关系 *表示在0.05水平显著相关。"

图3

森林细根周转率与土壤理化性质之间的关系 CEC: 土壤阳离子交换量。*表示在0.05水平显著相关。"

表3

纬度、年平均温度、年平均降水量、土壤有机碳含量、土壤pH值、土壤容重、土壤阳离子交换量、沙土含量、壤土含量、黏土含量与细根周转率的Pearson相关关系"

MAT MAP Soil
organic carbon
Soil pH Soil bulk density CEC Sand
fraction
Clay
fraction
Silt
fraction
lg (fine root turnover rate)
Latitude -0.867** -0.609** -0.164 0.168 0.348** 0.157 0.124 0.097 0.105 -0.367**
MAT 0.576** -0.029 -0.009 -0.332** -0.03 -0.211 -0.011 0.361** 0.233*
MAP -0.101 -0.094 -0.254* -0.048 -0.167 0.052 0.221 0.240*
Soil organic carbon -0.449** 0.14 0.11 0.126 -0.171 0.029 0.254*
Soil pH 0.026 0.235 -0.041 0.231 -0.165 -0.297*
Soil bulk density -0.464** 0.900** -0.599** -0.852** -0.098
CEC -0.545** 0.376* 0.491** -0.071
Sand fraction -0.823** -0.772** 0.038
Clay fraction 0.284* -0.146
Silt fraction 0.104
[1] 陈莉莉, 袁志友, 穆兴民, 焦峰, 邓强 (2015). 森林细根生产力研究进展. 西北林学院学报 30(3), 70-75, 80.
[2] 范月君, 侯向阳, 石红霄, 师尚礼 (2012). 气候变暖对草地生态系统碳循环的影响. 草业学报 21, 294-302.
[3] 江洪, 白莹莹, 饶应福, 陈冲, 蔡永立 (2016). 新围垦盐土地三种人工林群落细根生物量及其影响因素分析. 植物学报 51, 343-352.
[4] 赖宗锐 (2015). 四种典型沙生灌木细根动态及其对土壤有机碳的影响. 博士论文. 北京: 北京林业大学. pp. 10-11.
[5] 李高飞, 任海 (2004). 中国不同气候带各类型森林的生物量和净第一性生产力. 热带地理 24, 306-310.
[6] 李凌浩, 林鹏, 邢雪荣 (1998). 武夷山甜槠林细根生物量和生长量研究. 应用生态学报 9, 337-340.
[7] 刘秀 (2018). 红树林地上凋落物和细根对土壤有机质的相对贡献. 博士论文. 北京: 中国林业科学研究院. pp. 3.
[8] 梅莉, 王政权, 程云环, 郭大立 (2004). 林木细根寿命及其影响因子研究进展. 植物生态学报 28, 704-710.
[9] 倪惠菁, 苏文会, 范少辉, 曾宪礼, 金艺 (2019). 养分输入方式对森林生态系统土壤养分循环的影响研究进展. 生态学杂志 38, 863-872.
[10] 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞 (2018). 中国草地生态系统根系周转的空间格局和驱动因子. 植物生态学报 42, 337-348.
[11] 王瑞丽, 程瑞梅, 肖文发, 封晓辉, 刘泽彬, 王晓荣 (2012). 森林细根生产和周转的影响因素. 世界林业研究 25, 19-24.
[12] 王韶仲 (2017). 树木细根形态结构和生物量动态的地理变异. 博士论文. 哈尔滨: 东北林业大学. pp. 57-58.
[13] 王玉霞 (2014). 地下净生产力、光合产物分配及根系周转对不同草地恢复措施的响应. 硕士论文. 长春: 东北师范大学. pp. 5.
[14] 吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 (2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报 34, 3529-3537.
[15] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴 (2017). 陆地生态系统地下碳输入与输出过程研究进展. 植物学报 52, 652-668.
[16] 杨海廷 (2019). 土壤性能对树木细根生长的影响. 乡村科技 (21), 54-55.
[17] 张丽, 张爽 (2018). 土壤pH值对绿化树生长的影响. 江西农业(16), 92, 97.
[18] 张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学 37(3), 126-138.
[19] 张鑫, 邢亚娟, 闫国永, 王庆贵 (2018). 细根对降水变化响应的meta分析. 植物生态学报 42, 164-172.
[20] 周松文 (2013). 不同气候带森林凋落物的变化. 现代园艺 (12), 15.
[21] Diabate B (2016). 松嫩草地地下净生产力和细根动态对不同的管理实践的响应. 博士论文. 长春: 东北师范大学. pp. 78-79.
[22] Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317-321.
[23] Arthur MA, Fahey TJ (1992). Biomass and nutrients in an Engelmann spruce—subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Can J For Res 22, 315-325.
[24] Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16, 1306-1316.
[25] Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013). Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362, 357-372.
[26] Cai HY, Li FR, Jin GZ (2019). Fine root biomass, production and turnover rates in plantations versus natural forests: effects of stand characteristics and soil properties. Plant Soil 436, 463-474.
[27] Cavelier J, Wright SJ, Santamaria J (1999). Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211, 207-213.
[28] Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol 147, 13-31.
[29] Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289-292.
[30] Henry AL, Cleland EE, Field CB, Vitousek PM (2005). Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142, 465-473.
[31] Iversen CM, Ledford J, Norby RJ (2008). CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179, 837-847.
[32] Joslin JD, Wolfe MH, Hanson PJ (2000). Effects of altered water regimes on forest root systems. New Phytol 147, 117-129.
[33] Kosola KR, Eissenstat DM, Graham JH (1995). Root demography of mature citrus trees: the influence of Phytophthora nicotianae. Plant Soil 171, 283-288.
[34] Liu L, Yang F, Wang YJ, Shen X, Janssens IA, Guenet B, Xiao CW (2019). Fine-root turnover, litterfall, and soil microbial community of three mixed coniferous-deciduous forests dominated by Korean pine (Pinus koraiensis) along a latitudinal gradient. Front Plant Sci 10, 1298.
[35] Liu W, Wang GL, Yu KX, Li P, Xiao L, Liu GB (2018). A new method to optimize root order classification based on the diameter interval of fine root. Sci Rep 8, 2960.
[36] Luo YQ (2003). Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations. Glob Chang Biol 9, 1118-1129.
[37] Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems. Plant Soil 276, 1-8.
[38] Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302, 1385-1387.
pmid: 14631037
[39] Pritchard SG, Strand AE (2008). Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. New Phytol 177, 287-291.
[40] Silver WL, Miya RK (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407-419.
pmid: 28547196
[41] Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science 302, 1344-1345.
doi: 10.1126/science.1091841 pmid: 14631025
[42] Vogt KA, Vogt DJ, Bloomfield J (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200, 71-89.
[43] Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159-219.
[44] Wang AS, Angle JS, Chaney RL, Delorme TA, McIntosh M (2006). Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38, 1451-1461.
[45] Wang SZ, Wang ZQ, Gu JC (2017). Variation patterns of fine root biomass, production and turnover in Chinese forests. J For Res 28, 1185-1194.
[46] Xiao CW, Janssens IA, Sang WG, Wang RZ, Xie ZQ, Pei ZQ, Yi Y (2010). Belowground carbon pools and dynamics in China’s warm temperate and sub-tropical deciduous forests. Biogeosciences 7, 275-287.
[47] Xiao CW, Sang WG, Wang RZ (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For Ecol Manage 255, 765-773.
[48] Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. CRC Crit Rev Plant Sci 29, 204-221.
[49] Zhou Y, Su JQ, Janssens IA, Zhou GS, Xiao CW (2014). Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374, 19-32.
[1] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500.
[2] 董雪蕊, 张红, 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局[J]. 生物多样性, 2019, 27(12): 1269-1278.
[3] 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876.
[4] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[5] 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348.
[6] 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12): 1168-1178.
[7] 曹永强, 张亮亮, 袁立婷. 辽宁省植被生长季NDVI对气候因子的响应[J]. 植物学报, 2018, 53(1): 82-93.
[8] 杨崇曜, 李恩贵, 陈慧颖, 张景慧, 黄永梅. 内蒙古西部自然植被的物种多样性及其影响因素[J]. 生物多样性, 2017, 25(12): 1303-1312.
[9] 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176.
[10] 王邵军, 王红, 李霁航. 热带森林不同演替阶段蚂蚁巢穴的分布特征及其影响因素[J]. 生物多样性, 2016, 24(8): 916-921.
[11] 闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 1-12.
[12] 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043.
[13] 付三雄, 李成磊, 尼玛卓玛, 唐林, 戚存扣. 气象因子对油菜种子中油分积累的影响[J]. 植物学报, 2014, 49(1): 41-48.
[14] 李东胜, 史作民, 冯秋红, 刘峰. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J]. 植物生态学报, 2013, 37(9): 793-802.
[15] 刘骏, 杨清培, 余定坤, 宋庆妮, 赵广东, 王兵. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献[J]. 植物生态学报, 2013, 37(8): 739-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张振珏. 香子兰落花落果的某些规律[J]. 植物学报, 1985, 3(05): 36 -37 .
[2] 高潜;刘玉瑛;费一楠;李大朋;刘祥林*. 拟南芥根的辐射形态相关基因SHORT-ROOT 研究进展[J]. 植物学报, 2008, 25(03): 363 -372 .
[3] 王宝山 赵可夫 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学报, 1997, 14(增刊): 25 -30 .
[4] 贺锋 吴振斌. 水生植物在污水处理和水质改善中的应用[J]. 植物学报, 2003, 20(06): 641 -647 .
[5] 田宝霖 王士俊 李承森 陈贵仁. 晚古生代华夏植物群的起源中心演化中心和演化、绝灭机制的探讨[J]. 植物学报, 2000, 17(专辑): 21 -33 .
[6] 张燕 方力 李天飞 姚照兵 蒋金辉. 钙对烟草叶片热激忍耐和活性氧代谢的影响[J]. 植物学报, 2002, 19(06): 721 -726 .
[7] 贾虎森 李德全 韩亚琴. 叶绿体中的细胞色素b-559[J]. 植物学报, 2001, 18(02): 158 -162 .
[8] 孙卫;李崇晖;王亮生;戴思兰*. 菊花不同花色品种中花青素苷代谢分析[J]. 植物学报, 2010, 45(03): 327 -336 .
[9] 李红 邝炎华. 植物磷胁迫蛋白和铁胁迫蛋白研究进展[J]. 植物学报, 2001, 18(05): 571 -576 .
[10] 张大勇, 姜新华. 对于作物生产的生态学思考[J]. 植物生态学报, 2000, 24(3): 383 -384 .