植物学报 ›› 2017, Vol. 52 ›› Issue (4): 389-393.doi: 10.11983/CBB17110

• 热点评 •    下一篇

大豆向热带地区发展的遗传基础

李艳, 盖钧镒*()   

  1. 南京农业大学国家大豆改良中心/农业部大豆生物学与遗传育种重点实验室/作物遗传与种质创新国家重点实验室/ 江苏省现代作物生产协同创新中心, 南京 210095
  • 收稿日期:2017-06-01 接受日期:2017-06-06 出版日期:2017-07-01 发布日期:2017-05-05
  • 通讯作者: 盖钧镒 E-mail:sri@njau.edu.cn
  • 作者简介:

    # 共同第一作者

The Genetic Basis of Soybean Extended to Tropical Regions

Yan Li, Junyi Gai*   

  1. National Center for Soybean Improvement/MOA Key Laboratory for Biology and Genetic Improvement of Soybean (General)/ National Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2017-06-01 Accepted:2017-06-06 Online:2017-07-01 Published:2017-05-05
  • Contact: Gai Junyi E-mail:sri@njau.edu.cn
  • About author:

    # Co-first authors

摘要:

大豆(Glycine max)是光周期敏感的植物, 该特性是决定其生育期及其生态适应区的关键因素。温带的大豆品种引种到热带地区(短日照)时, 开花期和成熟期提前、产量降低, 限制了大豆在热带地区的种植。长童期(LJ)大豆品种的发现是解决该问题的重要突破。在短日照条件下, LJ品种比温带品种开花晚、体量大、成熟晚且产量提高。前期研究发现, J位点是控制LJ性状的关键位点。近期, 我国科学家通过精细定位克隆了J基因, 发现其与拟南芥(Arabidopsis thaliana)早花基因(ELF3)同源。他们通过功能互补和近等基因系等方法验证了J基因的功能, 在短日照条件下, 等位基因jJ开花晚、成熟晚且产量提高。进一步研究发现, J蛋白与E1基因(豆科植物开花抑制因子)的启动子结合抑制E1基因的表达, 从而解除E1对大豆开花基因(FT)的抑制, 促进大豆在短日照下开花。研究还发现在大豆种质资源中存在多种j等位变异。该研究引领了大豆生育期遗传研究的新方向, 揭示了大豆向热带地区发展的遗传基础。

Abstract:

Soybean (Glycine max) is a plant sensitive to photoperiod, which determines its maturity date and therefore its adaptation to respective eco-regions. The soybean varieties from temperate regions flower and mature very early in tropical regions (short photoperiod), which leads to low yields and limits the commercial cultivation of soybean in these regions. The discovery of long-juvenile (LJ) soybean varieties is a major breakthrough to overcome this problem. Under short photoperiod, the LJ soybean varieties show delayed flowering and maturity time, enhanced growth and therefore, higher yields than temperate varieties. Previous studies found that locus J had a major contribution to the LJ trait. Recently, Chinese scientists cloned the J gene by fine-mapping and found it as an ortholog of Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). The functions of J gene were confirmed by transgenic complementation and near-isogenic lines: the j genotype showed later flowering and maturity date and more yield potential than the J genotype. Further studies showed that the J protein bound to the promoter of the E1 gene (a legume-specific flowering repressor) to downregulate E1 expression, thereby relieving the suppression of E1 on soybean FLOWERING LOCUS T (FT) genes, which leads to early flowering under short photoperiod. In addition, multiple j alleles and haplotypes were identified from soybean germplasm. The study leads to a new direction in genetic research of growth periods for the expansion of soybean to tropical regions.

[1] Bernard R (1971). Two major genes for time of flowering and maturity in soybeans.Crop Sci 11, 242-244.
[2] Bonato ER, Vello NA (1999). E-6, a dominant gene condi- tioning early flowering and maturity in soybeans.Genet Mol Biol 22, 229-232.
[3] Buzzell R (1971). Inheritance of a soybean flowering res- ponse to fluorescent-daylength conditions.Can J Genet Cytol 13, 703-707.
[4] Buzzell R, Voldeng H (1980). Inheritance of insensitivity to long daylength.Soyb Genet Newsl 7, 26-29.
[5] Cao D, Takeshima R, Zhao C, Liu BH, Jun A, Kong FJ (2017). Molecular bases of flowering under long days and stem growth habit in soybean.J Exp Bot 68, 1873-1884.
[6] Carpentieri-Pipoplo V, Almeida LAD, Kiihl RAS (2002). Inheritance of a long juvenile period under short-day con- ditions in soybean.Genet Mol Biol 25, 463-469.
[7] Cober ER (2011). Long juvenile soybean flowering respon- ses under very short photoperiods.Crop Sci 51, 140-145.
[8] Cober ER, Molnar SJ, Charette M, Voldeng HD (2010). A new locus for early maturity in soybean.Crop Sci 50, 524-527.
[9] Cober ER, Voldeng HD (2001). A new soybean maturity and photoperiod-sensitivity locus linked toE1 and T. Crop Sci 41, 698-701.
[10] Destro D, Carpentieri-Pipolo V, Kiihl RAS, Almeida LA (2001). Photoperiodism and genetic control of the long juvenile period in soybean: a review.Crop Breed Appl Bio- technol 1, 72-92.
[11] Hartwig EE, Kiihl RAS (1979). Identification and utilization of a delayed flowering character in soybeans for short-day conditions.Field Crops Res 2, 145-151.
[12] Kong FJ, Liu BH, Xia ZJ, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010). Two coordinately regulated homologs ofFLOW- ERING LOCUS T are involved in the control of photo- periodic flowering in soybean. Plant Physiol 154, 1220-1231.
[13] Kong FJ, Nan HY, Cao D, Li Y, Wu FF, Wang JL, Lu SJ, Yuan XH, Cober ER, Abe J, Liu BH (2014). A new dominant geneE9 conditions early flowering and maturity in soybean. Crop Sci 54, 2529-2535.
[14] Li YH, Guan RX, Liu ZX, Ma YS, Wang LX, Li LH, Lin FY, Luan WJ, Chen PY, Yan Z, Guan Y, Zhu L, Ning XC, Smulders MJM, Li W, Piao RH, Cui YH, Yu ZM, Guan M, Chang RZ, Hou AF, Shi AN, Zhang B, Zhu SL, Qiu LJ (2008). Genetic structure and diversity of cultivated soy- bean (Glycine max(L.) Merr.) landraces in China. Theor Appl Genet 117, 857-871.
[15] Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008). Genetic redundancy in soybean photo- responses associated with duplication of the phytochrome A gene.Genetics 180, 995-1007.
[16] Lu SJ, Zhao XH, Hu YL, Liu SL, Nan HY, Li XM, Fang C, Cao D, Shi XY, Kong LP, Su T, Zhang FG, Li SC, Wang Z, Yuan XH, Cober ER, Weller JL, Liu BH, Hou XL, Tian ZX, Kong FJ (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49, 773-779.
[17] Mcblain BA, Bernard RL (1987). A new gene affecting the time of flowering and maturity in soybeans.J Hered 78, 160-162.
[18] Neumaier N, James AT (1993). Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics.Food Legume Newsl 8, 12-14.
[19] Ray JD, Hinson K, Mankono JEB, Malo MF (1995). Gene- tic-control of a long-juvenile trait in soybean.Crop Sci 35, 1001-1006.
[20] Samanfar B, Molnar SJ, Charette M, Schoenrock A, De- hne F, Golshani A, Belzile F, Cober ER (2017). Mapping and identification of a potential candidate gene for a novel maturity locus,E10, in soybean. Theor Appl Genet 130, 377-390.
[21] Sinclair TR, Hinson K (1992). Soybean flowering in respon- se to the long-juvenile trait.Crop Sci 32, 1242-1248.
[22] Spehar CR (1995). Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savan- nah.Field Crops Res 41, 141-146.
[23] Watanabe S, Harada K, Abe J (2011a). Genetic and mo- lecular bases of photoperiod responses of flowering in soy- bean.Breed Sci 61, 531-543.
[24] Watanabe S, Hideshima R, Xia ZJ, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based clon- ing of the gene associated with the soybean maturity locusE3. Genetics 182, 1251-1262.
[25] Watanabe S, Xia ZJ, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kita- mura K, Harada K (2011b). A map-based cloning strategy employing a residual heterozygous line reveals that theGIGANTEA gene is involved in soybean maturity and flow- ering. Genetics 188, 395-U260.
[26] Wilson RF (2008). Soybean: Market Driven Research Needs in Genetics and Genomics of Soybean. New York: Sprin- ger-Verlag.
[27] Xia ZJ, Watanabe S, Yamada T, Tsubokura Y, Nakashi- ma H, Zhai H, Anai T, Sato S, Yamazaki T, Lu SX, Wu HY, Tabata S, Harada K (2012a). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109, E2155-E2164.
[28] Xia ZJ, Zhai H, Liu BH, Kong FJ, Yuan XH, Wu HY, Cober ER, Harada K (2012b). Molecular identification of genes controlling flowering time, maturity, and photoperiod res- ponse in soybean.Plant Syst Evol 298, 1217-1227.
[29] Zhao C, Takeshima R, Zhu JH, Xu ML, Sato M, Watanabe S, Kanazawa A, Liu BH, Kong FJ, Yamada T, Abe J (2016). A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol 16, 20.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱诚 刘非燕 曾广文. 4PU对萝卜离体子叶衰老的影响[J]. 植物学报, 1997, 14(04): 42 -44 .
[2] 傅弘 池哲儒 常杰 傅承新. 基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ[J]. 植物学报, 2004, 21(04): 429 -436 .
[3] 李洪燕;郑青松;刘兆普*;李青. 海水胁迫对苦荬菜幼苗生长及生理特性的影响[J]. 植物学报, 2010, 45(01): 73 -78 .
[4] 李军. 红树莓雌雄配子体发育的研究[J]. 植物学报, 1994, 11(专辑): 10 .
[5] 杨家驹 扆铁梅 赵彩云. 中国裸子植物化石木的命名和鉴定[J]. 植物学报, 2000, 17(专辑): 117 -129 .
[6] 刘焱, 邢立静, 李俊华, 戴绍军. 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应[J]. 植物学报, 2012, 47(4): 366 -378 .
[7] 朱巧玲, 冷佳奕, 叶庆生. 黑毛石斛和长距石斛的光合特性[J]. 植物学报, 2013, 48(2): 151 -159 .
[8] 王义凤. 东天山山地草原的基本特点[J]. 植物生态学报, 1963, (1): 110 -130 .
[9] 方正, 胡式之. 第一次全国植被分类、分区及制图学术工作会议简报[J]. 植物生态学报, 1981, 5(2): 147 -148 .
[10] 王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响[J]. 植物生态学报, 2004, 28(6): 803 -809 .