植物学报 ›› 2017, Vol. 52 ›› Issue (3): 375-387.doi: 10.11983/CBB16103

• 专题论坛 • 上一篇    下一篇

玉米粗缩病的分子研究新进展

李荣改1,*(), 陆艳梅1, 王月影2, 王宝强1, 宋炜1, 张文英1   

  1. 1河北省农林科学院粮油作物研究所, 河北省作物遗传育种实验室, 石家庄 050035
    2河北农业大学生命科学学院, 保定 071001
  • 收稿日期:2016-05-06 接受日期:2016-08-23 出版日期:2017-05-01 发布日期:2017-05-27
  • 通讯作者: 李荣改 E-mail:lironggai@hotmail.com
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    河北省重点研发计划(No.16226323D)和河北省农林科学院博士基金(No.BS201504)

Molecular Study on Maize Rough Dwarf Disease: A Review

Ronggai Li1*, Yanmei Lu1, Yueying Wang2, Baoqiang Wang1, Wei Song1, Wenying Zhang1   

  1. 1Key Laboratory of Crop Genetics and Breeding of Hebei Province, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
    2College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
  • Received:2016-05-06 Accepted:2016-08-23 Online:2017-05-01 Published:2017-05-27
  • Contact: Li Ronggai E-mail:lironggai@hotmail.com
  • About author:

    # Co-first authors

摘要:

粗缩病是一种世界性玉米(Zea mays)病害, 造成玉米产量降低和品质下降。已有的研究表明, 导致玉米粗缩病的病毒有4种, 均属于植物呼肠孤病毒科、斐济病毒属(Fijivirus)第2组的成员, 它们的全基因组均由10条双链RNA片段组成, 编码13个蛋白分子; 迄今未发现对粗缩病完全免疫的研究材料, 但已筛选出少量在不同环境下均表现高抗的种质。玉米抗粗缩病为多基因控制的数量性状, 每条染色体上均有可能存在与粗缩病抗性有关的基因座(QTLs)。粗缩病毒侵染玉米后, 引起细胞防御系统中相关基因表达、蛋白质合成和激素含量等生物途径发生变化。该文对玉米粗缩病病原分子特征和遗传变异、抗性种质遗传基础及致(抗)病机理等方面的研究成果进行了阐述, 旨在为玉米抗粗缩病分子育种提供理论依据。

Abstract:

Maize rough dwarf disease (MRDD) is a worldwide viral disease that causes significant economic losses. Previous studies showed that 4 virus species within the genus Fijivirus, family Reoviruses cause maize rough dwarf disease: maize rough dwarf virus, Mal de Río Cuarto virus, rice black-streaked dwarf virus and southern rice black streaked dwarf virus. They are classified as Fijivirus group 2, sharing similar biological and genomic characteristics. And all of them contain 10 linear genomic segments of double-stranded RNA (dsRNA) that encode 13 proteins. The whole-genome sequences of the 4 viruses have been published and the functional genes were predicted. The functions of genes were preliminary studied. The completely immune germplasm has not been found; however, a small number of highly resistant germplasm have been identified in different environments. The resistance to MRDD is polygenically inherited and some major and minor quantitative trait loci (QTLs) have been identified. Each chromosome likely contains genes or QTLs for resistance to MRDD. The patterns of cellular defense system-related gene transcription, protein synthesis, hormone level and other biological pathways changed in response to virus infection. We summarize recent molecular studies on the maize rough dwarf disease pathogen, the genetic basis of resistance germplasm and the induced (anti-) mechanism of MRDD to provide theoretical guidance for anti-MRDD molecular breeding.

表1

侵染玉米的4种粗缩病毒分子基因组比较"

基因组片段 病毒 全长(bp) 开放阅读框(ORFs) 蛋白质分子量(kDa) 蛋白功能
S1 RBSDV 4501 36-4430 168.8 RNA依赖性RNA聚合酶
SRBSDV 4500 37-4431 169 RNA依赖性RNA聚合酶
MRDV 4501 36-4430 168.7 RNA依赖性RNA聚合酶
MRCV 4501 38-4432 168.4 RNA依赖性RNA聚合酶
S2 RBSDV 3812 46-3726 141.3 外壳蛋白
SRBSDV 3815 46-3726 141 核心衣壳
MRDV 3813 47-3727 141.5 未知
MRCV 3826 47-3727 141.7 B-突起蛋白
S3 RBSDV 3572 14-3441 132.0 鸟苷酸转移酶
SRBSDV 3618 34-3543 135 鸟苷酸转移酶
MRDV 3573 15-3455 132.1 未知
MRCV 3826 47-3727 141.7 核心蛋白
S4 RBSDV 3617 34-3543 135.6 B-突起蛋白
SRBSDV 3571 15-3455 132 B-突起蛋白
MRDV 3617 34-3543 135.4 结构蛋白
MRCV 3617 34-3549 134.4 未知
S5 RBSDV 3164 16-2827 106.8 次要核心结构蛋白
2378-3071 26.5 非结构蛋白
SRBSDV 3165 16-2835 108 未知
2499-3076 24 未知
MRDV 3164 16-2829 107.1 次要核心结构蛋白
2462-3073 23.6 非结构蛋白
MRCV 3162 16-2814 106.9 未知
S6 RBSDV 2645 81-2460 89.6 RNA沉默抑制子
SRBSDV 2651 82-2463 90 RNA沉默抑制子, 基质形成
MRDV 2645 82-2460 89.8 未知
MRCV 2639 80-2446 90.01 未知
S7 RBSDV 2193 42-1130 41.2 参与管状结构形成
1183-2112 36.4 非结构蛋白
SRBSDV 2176 41-1114 41 参与管状结构形成
1166-2095 36 未知
MRDV 2193 42-1130 41.1 参与管状结构形成
1183-2112 36.2 非结构蛋白
MRCV 2186 41-1126 41.5 非结构蛋白
1176-2105 36.8 非结构蛋白
S8 RBSDV 1927 25-1800 68.1 核转录调控因子
SRBSDV 1928 25-1800 68 核转录调节因子
MRDV 1936 25-1800 68 核心衣壳
MRCV 1931 25-1800 68.3 NTP结合蛋白
S9 RBSDV 1900 52-1095 39.9 毒基质的形成, 参与病毒复制
1160-1789 24.2 非结构蛋白
SRBSDV 1900 52-1095 40 毒基质的形成, 参与病毒复制
1159-1788 24 未知
MRDV 1900 52-1095 39.9 毒基质结构
1160-1789 24.2 非结构蛋白
MRCV 1870 52-1065 39.1 ATP酶活性
1223-1759 20.5 非结构蛋白
S10 RBSDV 1801 22-1698 63.3 外层衣壳
SRBSDV 1798 22-1695 63 外层衣壳
MRDV 1802 23-1699 63.2 外层衣壳
MRCV 1798 23-1696 63.5 外层衣壳

表2

玉米中已定位的抗粗缩病QTLs"

病原物 染色体(bin) 定位方法 标记类型 定位群体 表型解释率(%) 抗原 参考文献
MRCV 1/6/8/10 QTL SSR F2:3 10 LP116 Rossi et al., 2015
MRCV 1.03/8.03/8.04 QTL SSR F3 36.20 BLS14 Di Renzo et al., 2004
MRCV 1/4/10 QTL SSR RIL 8-14 BLS14 Bonamico et al., 2012
MRCV 1/4/8/10 QTL SSR F2:3 - DK664 Kreff et al., 2006
MRCV 1/2/6/8 AD/AMOVA SSR RIL - BLS14 Bonamico et al., 2010
MRCV 1/4/6/8/10 QTL SSR RIL - BLS14 Bonamico et al., 2013
RBSDV 1/2/5 QTL SSR RIL 4.69-17.74 80007 商伟等, 2011
RBSDV 8.03 QTL SNP/SSR RIL 24.8-37.3 X178 Shi et al., 2012
RBSDV 8.07 QTL SSR F2/BC1/RIL 12.0-28.8 90110 Luan et al., 2012
RBSDV 8.03 QTL SNP NIL 24.2-39.3 NT411 Tao et al., 2013
RBSDV 1/2/5/6/7/8 GWAS SNP Inbred lines - - Chen et al., 2015
RBSDV 6.02/7.02/8.07 BSA SSR F2/BC1 - 90110 Wang et al., 2007
RBSDV 1/2/3/4/5/6/7/8/10 GWAS SNP Inbred lines - 78599 Liu et al., 2014
RBSDV 1/2/3/4/5/6/9/10 GWAS SNP Inbred lines - - Hao et al., 2015
RBSDV 2 BSA SSR F2/BC1 - 齐319 何龙等, 2008
RBSDV 5/9 BSA SSR F2 - 87-1 陈艳萍等, 2008
RBSDV 2/6/7/8/10 QTL SSR RIL 12-28.9 90110 栾俊文, 2012
RBSDV 1.07/3.06/6.01/ BSA SSR RIL - 黄早四 陈永坤, 2007
RBSDV 2/3/4/6/7/8/10 QTL SNP RIL - 黄早四 史利玉, 2010
[1] 安德荣, 慕小倩 (1996). 禾谷类三种主要病毒病的电镜观察. 西北植物学报 16, 251-254.
[2] 陈艳萍, 孟庆长, 袁建华 (2008). 利用SSR-BSA技术筛选玉米粗缩病抗性基因分子标记. 江苏农业学报 24, 590-594.
[3] 陈永坤 (2007). 玉米抗粗缩病种质鉴定与基因定位初步研究. 博士论文. 乌鲁木齐: 新疆农业大学. pp. 37-54.
[4] 陈永坤, 李新海, 肖木辑, 李明顺, 苑森行, 王向东, 张世煌 (2008). 64份玉米自交系抗粗缩病的遗传变异分析. 作物学报 32, 1848-1854.
[5] 方守国, 于嘉林, 冯继东, 吴大椿, 李大伟, 韩成贵, 刘仪 (2001). 水稻黑条矮缩病毒基因组片段3全长cDNA的克隆及其序列分析. 农业生物技术学报 9, 311-315.
[6] 郭启唐, 李钊敏 (1995). 玉米粗缩病及自交系抗病性观察与分析. 植物保护 21, 21-23.
[7] 何龙, 王伯初, 吴红, 雷开荣 (2008). 玉米粗缩病抗性基因SSR标记初步研究. 广东农业科学 8, 5-8.
[8] 胡帆, 雷荣, 廖晓兰 (2013). 植物病毒在细胞间转运的机理探讨. 生物学杂志 30, 81-85.
[9] 黄强 (2010). 玉米粗缩病症与内源激素水平变化的关系研究. 硕士论文. 成都: 四川农业大学. pp. 35-40.
[10] 李常保, 宋建成, 姜丽君, 杨春英, 王启柏, 王守义 (2002). 玉米抗粗缩病病毒(MRDV)基因的RAPD标记及其辅助选择效果研究. 作物学报 29, 564-568.
[11] 梁琼, 燕永亮, 侯明生 (2003). 不同玉米品种抗感MRDV与防御酶活性的关系. 华中农业大学学报 22, 114-116.
[12] 刘志增, 池书敏, 宋占权, 陈景堂, 孟义江 (1996). 玉米自交系及杂交种抗粗缩病性鉴定与分析. 玉米科学 4, 68-70.
[13] 卢嫣红, 张金凤, 熊如意, 徐秋芳, 周益军 (2011). 南方水稻黑条矮缩病毒S6编码一个沉默抑制子. 中国农业科学 44, 2909-2917.
[14] 路银贵, 邸垫平, 苗洪芹, 田兰芝 (2001). 国外及国内玉米自交系抗粗缩病性鉴定及分析. 河北农业科学 5, 22-25.
[15] 栾俊文 (2012). 玉米粗缩病相关性状的遗传学分析和QTL定位. 博士论文. 济南: 山东大学. pp. 42-66.
[16] 商伟, 张彦军, 魏海忠, 孔晓民, 蒋飞, 刘保申 (2011). 玉米 SSR连锁图谱构建和粗缩病抗性QTL的初步定位. 山东农业科学 12, 1-6.
[17] 史利玉 (2010). 玉米粗缩病抗性遗传研究. 博士论文. 成都: 四川农业大学. pp. 56-83.
[18] 王安东, 赵德发 (2000). 玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究. 玉米科学 8, 80-82.
[19] 王飞 (2007). 玉米粗缩病抗病位点的分子标记定位. 博士论文. 济南: 山东大学. pp. 82-99.
[20] 薛林, 张丹, 徐亮, 金萌萌, 彭长俊, 徐辰武 (2011). 玉米抗粗缩病自交系种质的发掘和遗传多样性及其在育种中的应用. 作物学报 37, 2123-2129.
[21] 羊健 (2014). 水稻黑条矮缩病毒基因组S5的编码方式及其编码蛋白的功能研究. 博士论文. 长沙: 湖南农业大学. pp. 37-63.
[22] 杨兴飞, 温广波, 杨轶 (2010). 玉米不同种质对粗缩病的抗性鉴定和分析. 玉米科学 18, 144-146.
[23] 张爱红, 任萍, 邸垫平, 苗洪芹, 曹克强 (2012). RBSDV所致玉米粗缩病不同病级植株内源激素水平变化研究. 华北农学报 26, 217-220.
[24] 张恒木 (2001). 水稻黑条矮缩病毒分子生物学. 博士论文. 杭州: 浙江大学. pp. 66-128.
[25] 张恒木, 陈剑平, 雷娟丽, 程晔, 薛庆中 (2002). 水稻黑条矮缩病毒基因组片段S7的cDNA克隆及全序列分析. 微生物学报 42, 200-207.
[26] 张恒木, 雷娟利, 陈剑平 (2001). 浙江和河北发生的一种水稻、小麦、玉米矮缩病是水稻黑条矮缩病毒引起的. 中国病毒学 16, 246-251.
[27] 张永生 (2005). 玉米遗传图谱构建和花粉管通道法转化玉米的研究. 博士论文. 济南: 山东大学. pp. 63-76.
[28] 钟永旺, 周洁, 庄斌全, 魏春红, 李毅 (2003). 水稻黑条矮缩病毒第七号片段的cDNA克隆及其在大肠杆菌中的表达. 微生物学报 43, 442-447.
[29] Ali FH, Yan JB (2012). Disease resistance in maize and the role of molecular breeding in defending against global threat.J Integr Plant Biol 54, 134-151.
[30] Bonamico NC, Balzarini MG, Arroyo AT, Ibañez MA, Díaz DG, Salerno JC, Di Renzo MA (2010). Association between microsatellites and resistance to Mal de Río Cuarto in maize by discriminant analysis.Phyton-Revista Int Bot Exp 79, 31-38.
[31] Bonamico NC, Di Renzo MA, Borghi M, Ibanez MA, Diaz DG, Balzarini MG (2013). Mapping QTL for a multivariate measure of the reaction with the Mal de Río Cuarto virus.J Basic Appl Genet 24, 11-21.
[32] Bonamico NC, Di Renzo MA, Ibañez MA, Borghi M, Díaz DG, Salerno JC, Balzarini MG (2012). QTL analysis of resistance to Mal de Río Cuarto disease in maize using recombinant inbred lines.J Agri Sci 150, 619-629.
[33] Caplan J, Dinesh-Kumar SP (2006). Recognition and signal transduction associated with R gene-mediated re- sistance, natural resistance mechanisms of plants to vir- uses. In: Loebenstein G, Carr JP, eds. Natural Resistance Mechanisms of Plants to Viruses. Berlin: Springer. pp. 73-98.
[34] Chen GS, Wang XM, Hao JJ, Yan JB, Ding JQ (2015). Genome-wide association implicates candidate genes conferring resistance to maize rough dwarf disease in ma- ize.PLoS One 10, e0142001.
[35] Cheng ZB, Li S, Gao RZ, Sun F, Liu WC, Zhou GH, Wu JX, Zhou XP, Zhou YJ (2013). Distribution and genetic diversity of Southern rice black-streaked dwarf virus in China.Virol J 10, 307.
[36] Di Renzo MA, Bonamico NC, Díaz DD, Ibañez MM, Faricelli ME, Balzarini MG, Salerno JC (2004). Micro- satellite markers linked to QTL for resistance to Mal de Río Cuarto disease inZea mays L. J Agri Sci 142, 289-295.
[37] Di Renzo MA, Bonamico NC, Díaz DD, Salerno JC, IbaÑEz MM, Gesumaría JJ (2002). Inheritance of resis- tance to Mal de Río Cuarto (MRC) disease in Zea mays(L.). J Agri Sci 139, 47-53.
[38] Distéfano AJ, Conci LR, Hidalgo MM, Guzmán FA, Hopp HE, del Vas M (2002). Sequence analysis of genome segments S4 and S8 of Mal de Río Cuarto virus (MRCV): evidence that the virus should be a separate Fijivirus species. Arch Virol 147, 1699-1709.
[39] Distéfano AJ, Conci LR, Hidalgo MM, Guzmán FA, Hopp HE, del Vas M (2003). Sequence and phylogenetic analysis of genome segments S1, S2, S3 and S6 of Mal de Río Cuarto virus, a newly accepted Fijivirus species. Virus Res 92, 113-121.
[40] Distéfano AJ, Hopp HE, Del Vas M (2005). Sequence analysis of genome segments S5 and S10 of Mal de Río Cuarto virus (Fijivirus, Reoviridae). Arch Virol 150, 1241-1248.
[41] Distéfano AJ, Maldonado S, Hopp HE, del Vas M (2009). Mal de Río Cuarto virus (MRCV) genomic segment S3 codes for the major core capsid protein.Virus Genes 38, 455-460.
[42] Fang S, Yu J, Feng J, Han C, Li D, Liu Y (2001). Identi- fication of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China.Arch Virol 146, 167-170.
[43] Guzmán FA, Arneodo JD, Saavedra Pons AB, Truol GA, Luque AV, Conci LR (2010). Immunodetection and subcellular localization of Mal de Río Cuarto virus P9-1 protein in infected plant and insect host cells.Virus Genes 41, 111-117.
[44] Guzmán FA, Distéfano AJ, Arneodo JD, Hopp HE, Lenardon SL, Del Vas M, Conci LR (2007). Sequencing of the bicistronic genome segments S7 and S9 of Mal de Río Cuarto virus (Fijivirus, Reoviridae) completes the genome of this virus. Arch Virol 152, 565-573.
[45] Hao DR, Cheng YJ, Chen GQ, Lu HH, Shi ML, Zhang ZL, Huang XL, Mao YX, Xue L (2015). Identification of significant single nucleotide polymorphisms for resistance to maize rough dwarf disease in elite maize (Zea mays L.) inbred lines. Euphytica 203, 109-120.
[46] Isogai M, Uyeda I, Lee BC (1998). Detection and assign- ment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10.J Gen Virol 79, 1487-1494.
[47] Jia DS, Chen HY, Zheng AL, Chen Q, Liu QF, Xie LH, Wu ZJ, Wei TY (2012a). Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein.J Virol 86, 5800-5807.
[48] Jia MA, Li YQ, Lei L, Di DP, Miao HQ, Fan ZF (2012b). Alteration of gene expression profile in maize infected with a double-stranded RNA fijivirus associated with sym- ptom development.Mol Plant Pathol 13, 251-262.
[49] Kreff E, Pacheco MG, Díaz D, Robredo C, Puecher D, Céliz A, Salerno JC (2006). Resistance to Mal de Río Cuarto virus in maize: a QTL mapping analysis.J Basic Appl Genet 17, 41-50.
[50] Li J, Xue J, Zhang HM, Yang J, Lv MF, Xie L, Meng Y, Li PP, Chen JP (2013). Interactions between the P6 and P5-1 proteins of southern rice black-streaked dwarf fijivirus in yeast and plant cells.Arch Virol 158, 1649-1659.
[51] Li J, Xue J, Zhang HM, Yang J, Xie L, Chen JP (2015a). Characterization of homologous and heterologous inter- actions between viroplasm proteins P6 and P9-1 of the fijivirus southern rice black-streaked dwarf virus.Arch Virol 160, 453-457.
[52] Li XY, Zhang WY, Ding Y, Wang ZC, Wu ZX, Yu L, Hu DY, Li P, Song BS (2015b). Characterization of the import- ance of terminal residues for southern rice black-streaked dwarf virus P9-1 viroplasm formations.Protein Expres Purif 111, 98-104.
[53] Li YQ, Jia MG, Jiang ZD, Zhou T, Fan ZF (2012). Molecular variation and recombination in RNA segment 10 of rice black-streaked dwarf virus isolated from China during 2007-2010.Arch Virol 157, 1351-1356.
[54] Liu CL, Weng JF, Zhang DG, Zhang XC, Yang XY, Shi LY, Meng Q, Yuan JH, Guo XP, Hao ZF (2014). Genome- wide association study of resistance to rough dwarf dis- ease in maize.Eur J Plant Pathol 139, 205-216.
[55] Liu HJ, Wei CH, Zhong YW, Li Y (2007a). Rice black- streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts.FEBS Lett 581, 2534-2540.
[56] Liu HJ, Wei CH, Zhong YW, Li Y (2007b). Rice black- streaked dwarf virus outer capsid protein P10 has self- interactions and forms oligomeric complexes in solution.Virus Res 127, 34-42.
[57] Liu XY, Yang J, Xie L, Li J, Song XJ, Chen JP, Zhang HM (2015). P5-2 of rice black-streaked dwarf virus is a non- structural protein targeted to chloroplasts.Arch Virol 160, 1211-1217.
[58] Liu Y, Jia DS, Chen HY, Chen Q, Xie LH, Wu ZJ, Wei TY (2011). The P7-1 protein of southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells.Arch Virol 156, 1729-1736.
[59] Luan JW, Wang F, Li YJ, Zhang B, Zhang JR (2012). Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.). Theor Appl Genet 125, 781-791.
[60] Lv M, Xie L, Yang J, Chen J, Zhang HM (2016). Complete genomic sequence of maize rough dwarf virus, a fijivirus transmitted by the small brown planthopper.Genome A 4, e01529-e01515.
[61] Mao QZ, Zheng SL, Han QM, Chen HY, Ma YY, Jia DS, Chen Q, Wei TY (2013). New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells.J Virol 87, 6819-6828.
[62] Mar TT, Liu WW, Wang XF (2014). Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission.J Proteom- ics 102, 83-97.
[63] Maroniche GA, Mongelli VC, Peralta AV, Distéfano AJ, Llauger GL, Taboga OA, Hopp EH, del Vas M (2010). Functional and biochemical properties of Mal de Río Cuarto virus (Fijivirus, Reoviridae) P9-1 viroplasm protein show further similarities to animal reovirus counterparts. Virus Res 152, 96-103.
[64] Milne RG, Conti M, Lisa V (1973). Partial purification, structure and infectivity of complete maize rough dwarf virus particles.Virology 53, 130-141.
[65] Milne RG, Lovisolo O (1977). Maize rough dwarf and related viruses.Adv Virus Res 21, 267-341.
[66] Nakashima N, Koizumi M, Watanabe H, Noda H (1996). Complete nucleotide sequence of the Nilaparvata lugens reovirus: a putative member of the genus Fijivirus. J Gen Virol 77, 139-146.
[67] Rossi EA, Borghi ML, Renzo MAD, Bonamico NC (2015). Quantitative trait loci (QTL) identification for resistance to Mal de Río Cuarto Virus (MRCV) in maize based on seg- regate population.Open Agri J 9, 55.
[68] Shi LY, Hao ZF, Weng JF, Xie CX, Liu CL, Zhang DG, Li MS, Bai L, Li XH, Zhang SH (2012). Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms.Mol Breed 30, 615-625.
[69] Song W, Wang BQ, Li XH, Wei JF, Chen L, Zhang DM, Zhang WY, Li RG (2015). Identification of immune related LRR-containing genes in maize (Zea mays L.) by genome- wide sequence analysis. Int J Genomics 2015, 231358.
[70] Sun ZT, He YQ, Li JM, Wang X, Chen JP (2015). Genome- wide characterization of rice black streaked dwarf virus- responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Plant Cell Physiol 56, 688-699.
[71] Supyani S, Hillman BI, Suzuki N (2007). Baculovirus ex- pression of the 11 mycoreovirus-1 genome segments and identification of the guanylyltransferase-encoding segm- ent.J Gen Virol 88, 342-350.
[72] Tao YF, Liu QC, Wang HH, Zhang YJ, Huang XY, Wang BB, Lai JS, Ye JR, Liu BS, Xu ML (2013). Identification and fine-mapping of a QTL,qMrdd1, that confers reces- sive resistance to maize rough dwarf disease. BMC Plant Biol 13, 145.
[73] Wang F, Zhang YS, Zhuang YL, Qin GZ, Zhang JR (2007). Molecular mapping of three loci conferring resistance to maize rough dwarf disease.Mol Plant Breed 5, 178-179.
[74] Wang Q, Tao T, Han YH, Chen XR, Fan ZF, Li DW, Yu JL, Han CG (2013). Nonstructural protein P7-2 encoded by rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase.Virol J 10, 325.
[75] Wang Q, Tao T, Zhang YJ, Wu WQ, Li DW, Yu JL, Han CG (2011). Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cyto- plasm and recruits viroplasm-associated protein P9-1.Virol J 8, 24.
[76] Wang Q, Yang J, Zhou GH, Zhang HM, Chen JP, Adams MJ (2010). The complete genome sequence of two isolates of southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. J Phytopathol 158, 733-737.
[77] Wang ZH, Fang SG, Xu JL, Sun LY, Li DW, Yu JL (2003). Sequence analysis of the complete genome of rice black- streaked dwarf virus isolated from maize with rough dwarf disease.Virus Genes 27, 163-168.
[78] Wu JY, Li J, Mao X, Wang WW, Cheng ZB, Zhou YJ, Zhou XP, Tao XR (2013). Viroplasm protein P9-1 of rice black- streaked dwarf virus preferentially binds to single-str- anded RNA in its octamer form, and the central interior structure formed by this octamer constitutes the major RNA binding site.J Virol 87, 12885-12899.
[79] Xu DL, Mou GP, Wang K, Zhou GH (2014). MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.Virus Res 190, 60-68.
[80] Xu QF, Ni HP, Zhang JF, Lan Y, Ren CM, Zhou YJ (2015). Whole-genome expression analysis of rice black-streaked dwarf virus in different plant hosts and small brown plant- hopper.Gene 572, 169-174.
[81] Yang J, Zhang HM, Ying L, Li J, Lv MF, Xie L, Li PP, Liu XY, Dai LY, Chen JP (2014). Rice black-streaked dwarf virus genome segment S5 is a bicistronic mRNA in infec- ted plants.Arch Virol 159, 307-314.
[82] Yin X, Xu FF, Zheng FQ, Li XD, Liu BS, Zhang CQ (2011). Molecular characterization of segments S7 to S10 of a southern rice black-streaked dwarf virus isolate from mai- ze in northern China.Virol Sin 26, 47-53.
[83] Yin X, Zheng FQ, Tang W, Zhu QQ, Li XD, Zhang GM, Liu HT, Liu BS (2013). Genetic structure of rice black-streak- ed dwarf virus populations in China.Arch Virol 158, 2505-2515.
[84] Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redinbaugh MG (2014). Genetic analysis of resis- tance to six virus diseases in a multiple virus-resistant maize inbred line.Theor Appl Genet 127, 867-880.
[85] Zhang CZ, Liu YY, Liu LY, Lou ZY, Zhang HY, Miao HQ, Hu XB, Pang YP, Qiu BS (2008). Rice black streaked dwarf virus P9-1, an α-helical protein, self-interacts and forms viroplasms in vivo. J Gen Virol 89, 1770-1776.
[86] Zhang HM, Chen J, Adams M (2001). Molecular charac- terisation of segments 1 to 6 of rice black-streaked dwarf virus from China provides the complete genome.Arch Virol 146, 2331-2339.
[87] Zhang LD, Wang ZH, Wang XB, Li DW, Han CG, Zhai YF, Yu JL (2005). Two virus-encoded RNA silencing suppres- sors, P14 of beet necrotic yellow vein virus and S6 of rice black streak dwarf virus.Chin Sci Bull 50, 305-310.
[88] Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG (2008). Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull 53, 3677-3685.
[89] Zhou GH, Xu DL, Xu DG, Zhang MX (2013). Southern rice black-streaked dwarf virus: a white-backed planthopper- transmitted fijivirus threatening rice production in Asia. Front Microbiol 4, 270.
[90] Zhou Y, Weng JF, Chen YP, Liu CL, Han XH, Hao ZF, Li MS, Yong HJ, Zhang DG, Zhang SH (2015a). Phylogenetic and recombination analysis of rice black-streaked dwarf virus segment 9 in China.Arch Virol 160, 1119-1123.
[91] Zhou Y, Weng JF, Chen YP, Wu JR, Meng QC, Han XH, Hao ZF, Li MS, Yong HJ, Zhang DG (2015b). Molecular genetic analysis and evolution of segment 7 in rice black- streaked dwarf virus in China.PLoS One 10, e0131410.
[92] Zhou Y, Xu ZN, Duan CX, Chen YP, Meng QC, Wu JR, Hao ZF, Wang ZH, Li MS, Yong HJ, Zhang DG, Zhang SH, Weng JF, Li XH (2016). Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize.J Exp Bot 67, 4593-4609.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 石建明 桂耀林 朱至清. 甜菜叶柄脱分化过程中无丝分裂现象的观察[J]. 植物学报, 1989, 6(03): 155 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 徐景先 王宇飞 杨健 普光荣 张翠芬. 云南第三纪植物群及其古气候的研究进展[J]. 植物学报, 2000, 17(专辑): 84 -94 .
[8] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[9] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[10] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .