植物学报 ›› 2017, Vol. 52 ›› Issue (2): 235-240.doi: 10.11983/CBB16099

• 专题论坛 • 上一篇    下一篇


商业绯, 李明, 丁博, 牛浩, 杨振宁, 陈小强, 曹高燚, 谢晓东*()   

  1. 天津农学院农学与资源环境学院, 天津 300384
  • 收稿日期:2016-05-02 接受日期:2016-10-16 出版日期:2017-03-01 发布日期:2017-04-05
  • 通讯作者: 谢晓东 E-mail:xiex@tjau.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金资助:

Advances in Auxin Regulation of Plant Stomatal Development

Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie*   

  1. College of Agriculture, Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2016-05-02 Accepted:2016-10-16 Online:2017-03-01 Published:2017-04-05
  • Contact: Xie Xiaodong E-mail:xiex@tjau.edu.cn
  • About author:

    # Co-first authors


气孔是分布于植物表皮由保卫细胞围成的小孔, 是植物体与外界环境进行水分和气体交换的重要通道, 通过影响光合作用、蒸腾作用及一系列生物学过程来促进植物适应环境的变化。生长素是最早被发现的植物激素, 在植物生长发育中发挥重要作用。近年来的研究表明, 生长素通过载体蛋白-TIR1/AFB受体-AUXIN/IAA-ARFs信号通路, 调控STOMAGEN的表达; 之后, 经STOMAGEN-类LRR受体蛋白激酶ERf-MAPKs级联反应激酶-SPCH转录因子信号通路, 启动气孔的发育进程。EPF1、EPF2和类LRR受体蛋白激酶TMM不是该过程的必需元件。生长素对气孔的调控受光信号影响, 光信号通路组分E3泛素连接酶COP1位于MAPKs激酶的上游, 参与气孔的发育调控。


As pores surrounded by two guard cells on the surface of plants, stomata act as important pathways exchanging water and gas between plants and the external atmosphere. Stomata can also adapt to changes in the environment by affecting the photosynthesis, transpiration and subsequent biological processes in plants. Auxin, the first discovered plant hormone, regulates various developmental processes in plants. Recent studies revealed that auxin is involved in stomatal development by transcription regulation of STOMAGEN via the auxin carrier protein-TIR1/AFB receptor-AUXIN/IAA-ARFs signaling pathway. Eventually, stomatal development is initiated by the STOMAGEN-LRR receptor-like protein kinase ERf-MAPK cascade protein kinase-SPCH signaling pathway. EPF1, EPF2 and the LRR receptor-like protein kinase TMM appear not key components in auxin-regulated stomatal development. Light signaling affects this regulatory process by the E3 ubiquitin ligase COP1 acting upstream of MAPK protein kinases.


生长素载体蛋白PIN3及生长素调控气孔发育图示SPCH、MUTE和FAMA的相应调控位置, 气孔发育过程伴随着生长素输出蛋白PIN3含量以及生长素活性的变化。"


生长素信号参与气孔建成的信号通路示意图生长素极性运输由输入载体蛋白AUX/LAX和输出载体蛋白PIN保持。生长素浓度低时, AUX/IAA蛋白的结构域III、IV与ARF转录因子结合, 促进STOMAGEN基因正常表达。Stomagen由叶肉细胞运转到表皮细胞, 结合并抑制类LRR受体蛋白ERf, 导致MAPKs信号级联反应被抑制, SPCH转录因子启动气孔的发育。生长素浓度高时, SCF复合体的F-box蛋白TIR1识别结构域II, 最终AUX/IAA蛋白被降解, 释放ARF转录因子。ARF转录因子与STOMAGEN启动子结合, STOMAGEN的表达被抑制。与Stomagen竞争的EPFs, 会结合类LRR受体蛋白ERf, 激发MAPKs信号级联反应, 抑制SPCH及其调控的气孔发育。图中箭头表示正调控作用, T表示负调控作用, 虚线表示该过程被抑制。"

[1] 潘瑞炽 (2008). 植物生理学(第6版). 北京: 高等教育出版社. pp. 169-171.
[2] 司马晓娇, 郑炳松 (2015). 植物生长素原初响应基因Aux/IAA研究进展. 浙江农林大学学报 32, 313-318.
[3] 肖文娟, 宾金华, 武波 (2004). 植物体中的MAPK. 植物学通报 21, 205-215.
[4] Balcerowicz M, Ranjan A, Rupprecht L, Fiene G, Hoecker U (2014). Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.Development 141, 3165-3176.
[5] Bergmann DC, Sack FD (2007). Stomatal development.Annu Rev Plant Biol 58, 163-181.
[6] Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins.Nature 414, 271-276.
[7] Gudesblat GE, Schneider-Pizoń J, Betti C, Mayerhofer J, Vanhoutte I, van Dongen W, Boeren S, Zhiponova M, de Vries S, Jonak C, Russinova E (2012). Speechless integrates brassinosteroid and stomata signaling pathways.Nat Cell Biol 14, 548-554.
[8] Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera- Estrella L, Tran LS (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress.Proc Natl Acad Sci USA 111, 851-856.
[9] Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007). The secretory peptide geneEPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21, 1720-1725.
[10] Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009). Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.Plant Cell Physiol 50, 1019-1031.
[11] Hunt L, Gray JE (2009). The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development.Curr Biol 19, 864-869.
[12] Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009). Cryptochromes, Phytochromes, and COP1 regulate light- controlled stomatal development in Arabidopsis.Plant Cell 21, 2624-2641.
[13] Khokon MA, Salam MA, Jammes F, Ye W, Hossain MA, Uraji M, Nakamura Y, Mori IC, Kwak JM, Murata Y (2015). Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol 17, 946-952.
[14] Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012). Brassinosteroid regulates stomatal development by GSK3- mediated inhibition of a MAPK pathway.Nature 482, 419-422.
[15] Lampard GR, Macalister CA, Bergmann DC (2008). Arabidopsis stomatal initiation is controlled by MAPK- mediated regulation of the bHLH SPEECHLESS.Science 322, 1113-1116.
[16] Lau OS, Davies KA, Chang J, Adrian J, Rowe MH, Ballenger CE, Bergmann DC (2014). Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells.Science 345, 1605-1609.
[17] Le J, Liu XG, Yang KZ, Chen XL, Zou JJ, Wang HZ, Wang M, Vanneste S, Morita M, Tasaka M, Ding ZJ, Friml J, Beeckman T, Sack F (2014). Auxin transport and activity regulate stomatal patterning and development.Nat Com- mun 5, 3090.
[18] Lee JS, Hnilova M, Maes M, Lin YCL, Putarjunan A, Han SK, Avila J, Torii KU (2015). Competitive binding of antagonistic peptides fine-tunes stomatal patterning.Nature 522, 439-443.
[19] Livanos P, Giannoutsou E, Apostolakos P, Galatis B (2015). Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes ofZea mays. Plant Signal Behav 10, e984531.
[20] Ljung K, Ostin A, Lioussanne L, Sandberg G (2001). Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings.Plant Physiol 125, 464-475.
[21] Luo Q, Lian HL, He SB, Li L, Jia KP, Yang HQ (2014). Cop1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis.Plant Cell 26, 2441-2456.
[22] MacAlister CA, Ohashi-Ito K, Bergmann DC (2007). Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.Nature 445, 537-540.
[23] Matthias A, Jorg-Peter S, Barbara E, Robert H, Theo L, Heinz R, Axel H, Erwin G, Jorg F (2009). Expression of the Arabidopsis mutant abi1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Physiol 151, 2110-2119.
[24] Paponov IA, Teale WD, Trebar M, Blilou K, Palme K (2005). The PIN auxin efflux facilitators: evolutionary and functional perspectives.Trends Plant Sci 10, 170-177.
[25] Peer WA, Blakeslee JJ, Yang HB, Murphy AS (2011). Seven things we think we know about auxin transport.Mol Plant 4, 487-504.
[26] Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007). Termination of asymmetric cell division and differentiation of stomata.Nature 445, 501-505.
[27] Poór P, Tari I (2012). Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid.Funct Plant Biol 39, 1028-1037.
[28] Revalska M, Vassileva V, Zechirov G, Lantcheva A (2015). Is the auxin influx carrier LAX3 essential for plant growth and development in the model plantsMedicago truncatula, Lotus japonicus and Arabidopsis thaliana? Biotechnol Biotec Eq 29, 786-797.
[29] Saibo NJM, Vriezen WH, Beemster GTS, Straeten DVD (2003). Growth and stomata development of Arabidopsis, hypocotyls are controlled by gibberellins and modulated by ethylene and auxins.Plant J 33, 989-1000.
[30] Snaith PJ, Mansfield TA (1984). Studies of the inhibition of stomatal opening by naphth-1-ylacetic acid and abscisic acid.J Exp Bot 35, 1410-1418.
[31] Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2009). Stomagen positively regulates stomatal density in Arabidopsis.Nature 463, 241-244.
[32] Tanaka Y, Nose T, Jikumaru Y, Kamiya Y (2013). ABA inhibits entry into stomatal-lineage development in Arabi- dopsis leaves.Plant J 74, 448-457.
[33] Tiwari SB, Hagen G, Guilfoyle TJ (2004). Aux/IAA proteins contain a potent transcriptional repression domain.Plant Cell 16, 533-543.
[34] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.Plant Cell 9, 1963-1971.
[35] Wang HC, Ngwenyama N, Liu YD, Walker JC, Zhang SQ (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis.Plant Cell 19, 63-73.
[36] Widmann C, Gibson S, Jarpe B, Johnson GL (1999). Mitogen-activated protein kinase: conservation of a three- kinase module from yeast to human.Phys Rev 79, 143-180.
[37] Zhang JY, He SB, Li L, Yang HQ (2014). Auxin inhibits stomatal development through monopteros repression of a mobile peptide gene stomagen in mesophyll.Proc Natl Acad Sci USA 111, 3015-3023.
No related articles found!
Full text



[1] 杨映根 张立军 李钰. 桃果实采后生理特性初探[J]. 植物学报, 1995, 12(04): 47 -49 .
[2] 周世恭. 镧在植物学研究中的一些应用[J]. 植物学报, 1992, 9(02): 26 -29 .
[3] 郭晓雷. 内蒙古野生蒙古莸的引种研究[J]. 植物学报, 1996, 13(专辑): 105 .
[4] DU Weigua;Wang Binru;Tan Kehui and Hao Naibin. 大豆高光效育种的探讨[J]. 植物学报, 1984, 2(23): 7 -11 .
[5] 赵云云 周小梅 杨才. 四倍体大燕麦×六倍体裸燕麦的杂种F1的产生及鉴定[J]. 植物学报, 2003, 20(03): 302 -306 .
[6] 编辑部. 植物分子遗传学李家洋[J]. 植物学报, 2003, 20(03): 370 -372 .
[7] 周世恭 刘敏. 植物细胞中稀土元素含量电子显微镜与能谱的检测[J]. 植物学报, 1996, 13(专辑): 100 -101 .
[8] 姜琼, 王幼宁, 王利祥, 孙政玺, 李霞. 盐胁迫下大豆根组织定量PCR分析中内参基因的选择[J]. 植物学报, 2015, 50(6): 754 -764 .
[9] 马克明. 物种多度格局研究进展[J]. 植物生态学报, 2003, 27(3): 412 -426 .
[10] 张智猛, 万书波, 宁堂原, 戴良香. 氮素水平对花生氮素代谢及相关酶活性的影响[J]. 植物生态学报, 2008, 32(6): 1407 -1416 .