植物学报 ›› 2017, Vol. 52 ›› Issue (2): 225-234.DOI: 10.11983/CBB16023
收稿日期:
2016-02-01
接受日期:
2016-04-26
出版日期:
2017-03-01
发布日期:
2017-04-05
通讯作者:
伍国强
作者简介:
# 共同第一作者
基金资助:
Guoqiang Wu*, Qingzhao Shui, Ruijun Feng
Received:
2016-02-01
Accepted:
2016-04-26
Online:
2017-03-01
Published:
2017-04-05
Contact:
Wu Guoqiang
About author:
# Co-first authors
摘要: 钾(K)是植物生长发育必需的大量营养元素之一, 主要通过根细胞的K+通道及转运蛋白介导吸收。AKT1是Shaker型K+通道家族的重要成员, 在植物根吸收K+和体内跨膜转运中发挥重要作用。该文综述了植物AKT1的分子结构、组织特异性表达、调控机制及生物学功能等方面的研究进展, 并对该通道今后的研究方向进行了展望。
伍国强, 水清照, 冯瑞军. 植物K+通道AKT1的研究进展. 植物学报, 2017, 52(2): 225-234.
Guoqiang Wu, Qingzhao Shui, Ruijun Feng. Research Advance of K+ Channel AKT1 in Plants. Chinese Bulletin of Botany, 2017, 52(2): 225-234.
图1 植物Shaker型K+通道拓扑结构示意图(改自Nieves- Cordones and Gaillard, 2014)S1-S6为6个跨膜结构域; S4为电压感受器; CNBD为环核苷酸结合域。
Figure 1 Diagrammatic representation of plant Shaker type K+ channel topological structure (Modified from Nieves- Cordones and Gaillard, 2014)S1-S6 indicate six transmembrane domains; S4 represents voltage sensor; CNBD indicates cyclic-nucleotide binding domain.
图2 植物AKT1的系统进化树AKT1的来源及登录号为: 赤桉(Eucalyptus camaldulensis), EcAKT1 (AAL25648.1); 苹果(Malus domestica), MdAKT1 (XP_ 008352270); 大豆(Glycine max), GmAKT1 (NP_001304431); 胡杨(Populus euphratica), PeAKT1 (ADA79674); 棉花(Gossy- pium hirsutum), GhAKT1 (AHZ30618); 拟南芥(Arabidopsis thaliana), AtAKT1 (NP_180233.1); 霸王(Zygophyllum xanth- oxylon), ZxAKT1 (ACX37089.1); 胡萝卜(Daucus carota), DcAKT1 (CAG27094); 番茄(Lycopersicon esculentum), Le- AKT1 (CAA65254); 马铃薯(Solanum tuberosum), StAKT1 (NP_001275347); 麝香百合(Lilium longiflorum), LlAKT1 (AB- O15470); 大麦(Hordeum vulgare), HvAKT1 (ABE99810.1); 小麦(Triticum aestivum), TaAKT1 (AAF36832.1); 小果野蕉(Musa acuminata subsp. malaccensis), MaAKT1 (XP_ 009386140); 油棕(Elaeis guineensis), EgAKT1 (XP_010925- 144); 海枣(Phoenix dactylifera), PdAKT1 (XP_008809499); 烟草(Nicotiana tabacum), NtAKT1 (BAD81034); 葡萄(Vitis vinifera), VvAKT1 (NP_001268010)。甜菜(Beta vulgaris) Bv- AKT1由本课题组克隆。通过Clustal W软件进行多重序列比对; 采用最大似然法, 用JTT (Jones-Taylor-Thornton)模型(MEGA 5.10)构建植物AKT1的系统进化树。
Figure 2 Phylogenetic tree of plant AKT1The sources and GenBank accession numbers of AKT1 are as follows: Eucalyptus camaldulensis, EcAKT1 (AAL256- 48.1); Malus domestica, MdAKT1 (XP_008352270); Glycine max, GmAKT1 (NP_001304431); Populus euphratica, Pe- AKT1 (ADA79674); Gossypium hirsutum, GhAKT1 (AHZ30- 618); Arabidopsis thaliana, AtAKT1 (NP_180233.1); Zygophyllum xanthoxylon, ZxAKT1 (ACX37089.1); Daucus carota, DcAKT1 (CAG27094); Lycopersicon esculentum, LeAKT1 (CAA65254); Solanum tuberosum, StAKT1 (NP_001275- 347); Lilium longiflorum, LlAKT1 (ABO15470); Hordeum vulgare, HvAKT1 (ABE99810.1); Triticum aestivum, TaAKT1 (AAF36832.1); Musa acuminata subsp. malaccensis, MaAKT1 (XP_009386140); Elaeis guineensis, EgAKT1 (XP_ 010925144); Phoenix dactylifera, PdAKT1 (XP_008809- 499); Nicotiana tabacum, NtAKT1 (BAD81034); Vitis vinifera, VvAKT1 (NP_001268010). Beta vulgaris BvAKT1 was cloned by Wu's research group. Multiple alignment of AKT1 sequences was performed by the Clustal W. Phylogenetic tree of plants AKT1 was constructed by the Maximum Likelihood and JTT (Jones-Taylor-Thornton) model (MEGA 5.10).
基因 | 物种 | 表达部位 | 参考文献 |
---|---|---|---|
AtAKT1 | 拟南芥(Arabidopsis thaliana) | 根表皮、皮层及内皮层 | Lagarde et al., 1996 |
LeAKT1 | 番茄(Lycopersicon esculentum) | 根毛 | Hartje et al., 2000 |
VfAKT1 | 蚕豆(Vicia faba) | 叶和韧皮部 | Ache et al., 2001 |
GhAKT1 | 棉花(Gossypium hirsutum) | 叶细胞皮层、内皮层及光合细胞 | Xu et al., 2014 |
OsAKT1 | 水稻(Oryza sativa) | 根和叶 | Golldack et al., 2003 |
McAKT1 | 冰叶日中花(Mesembryanthemum crystallinum) | 茎和叶 | Su et al., 2001 |
PtAKT1 | 小花碱茅(Puccinellia tenuiflora) | 根 | Wang et al., 2015 |
SsAKT1 | 盐地碱蓬(Suaeda salsa) | 根和叶 | Duan et al., 2015 |
StAKT1 | 马铃薯(Solanum tuberosum) | 保卫细胞、叶表皮和根 | Zimmermann et al., 1998 |
TaAKT1 | 小麦(Triticum aestivum) | 根皮层细胞 | Buschmann et al., 2000 |
ZmAKT1 | 玉米(Zea mays) | 胚芽鞘细胞 | Philippar et al., 1999 |
CaAKT1 | 辣椒(Capsicum annuum) | 根 | Martinez-Cordero et al., 2005 |
NtAKT1 | 烟草(Nicotiana tabacum) | 根 | Sano et al., 2007 |
HvAKT1 | 大麦(Hordeum vulgare) | 叶 | Boscari et al., 2009 |
DcAKT1 | 胡萝卜(Daucus carota) | 茎、根毛和叶 | Formentin et al., 2004 |
VvAKT1.1 VvAKT1.2 | 葡萄(Vitis vinifera) 葡萄(V. vinifera) | 根和浆果 浆果 | Cuéllar et al., 2010 Cuéllar et al., 2013 |
表1 高等植物中的AKT1
Table 1 AKT1 in higher plants
基因 | 物种 | 表达部位 | 参考文献 |
---|---|---|---|
AtAKT1 | 拟南芥(Arabidopsis thaliana) | 根表皮、皮层及内皮层 | Lagarde et al., 1996 |
LeAKT1 | 番茄(Lycopersicon esculentum) | 根毛 | Hartje et al., 2000 |
VfAKT1 | 蚕豆(Vicia faba) | 叶和韧皮部 | Ache et al., 2001 |
GhAKT1 | 棉花(Gossypium hirsutum) | 叶细胞皮层、内皮层及光合细胞 | Xu et al., 2014 |
OsAKT1 | 水稻(Oryza sativa) | 根和叶 | Golldack et al., 2003 |
McAKT1 | 冰叶日中花(Mesembryanthemum crystallinum) | 茎和叶 | Su et al., 2001 |
PtAKT1 | 小花碱茅(Puccinellia tenuiflora) | 根 | Wang et al., 2015 |
SsAKT1 | 盐地碱蓬(Suaeda salsa) | 根和叶 | Duan et al., 2015 |
StAKT1 | 马铃薯(Solanum tuberosum) | 保卫细胞、叶表皮和根 | Zimmermann et al., 1998 |
TaAKT1 | 小麦(Triticum aestivum) | 根皮层细胞 | Buschmann et al., 2000 |
ZmAKT1 | 玉米(Zea mays) | 胚芽鞘细胞 | Philippar et al., 1999 |
CaAKT1 | 辣椒(Capsicum annuum) | 根 | Martinez-Cordero et al., 2005 |
NtAKT1 | 烟草(Nicotiana tabacum) | 根 | Sano et al., 2007 |
HvAKT1 | 大麦(Hordeum vulgare) | 叶 | Boscari et al., 2009 |
DcAKT1 | 胡萝卜(Daucus carota) | 茎、根毛和叶 | Formentin et al., 2004 |
VvAKT1.1 VvAKT1.2 | 葡萄(Vitis vinifera) 葡萄(V. vinifera) | 根和浆果 浆果 | Cuéllar et al., 2010 Cuéllar et al., 2013 |
[1] | 山仑 (2011). 科学应对农业干旱. 干旱地区农业研究 29, 1-5. |
[2] | 王毅, 武维华 (2009). 植物钾营养高效分子遗传机制. 植物学报 44, 27-36. |
[3] | Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001). VFK1, aVicia faba K+ channel involved in phloem unloading. Plant J 27, 571-580. |
[4] | Ahmad I, Mian A, Maathuis FJM (2016). Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot 67, 2689-2698. |
[5] | Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011). Root K+ acquisition in plants: theArabidopsis tha- liana model. Plant Cell Physiol 52, 1603-1612. |
[6] | Amtmann A, Sanders D (1999). Mechanisms of Na+ uptake by plant cells.Adv Bot Res 29, 75-112. |
[7] | Ardie SW, Liu S, Takano T (2010). Expression of the AKT1-type K+ channel gene fromPuccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29, 865-874. |
[8] | Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014). The twins K+ and Na+ in plants.J Plant Physiol 171, 723-731. |
[9] | Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development.Plant Cell Environ 32, 1761-1777. |
[10] | Buschmann PH, Vaidyanathan R, Gassmann W, Schr- oeder JI (2000). Enhancement of Na+ uptake currents, time dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells.Plant Physiol 122, 1387-1397. |
[11] | Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-sav- ing agriculture.J Exp Bot 55, 2365-2384. |
[12] | Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007). Two calcineurin B-like sensors, interacting with protein kinase CIPK23, regulate root transpiration and potassium uptake in Ara- bidopsis.Plant J 52, 223-239. |
[13] | Chérel I, Lefoulon C, Boeglin M, Sentenac H (2014). Molecular mechanisms involved in plant adaptation to low K+ availability.J Exp Bot 65, 833-848. |
[14] | Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Zimmermann S, Gaillard I (2013). Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells.Plant J 73, 1006-1018. |
[15] | Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam- Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010). A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under dr- ought stress conditions. Plant J 61, 58-69. |
[16] | Demidchik V (2014). Mechanisms and physiological roles of K+ efflux from root cells.J Plant Physiol 171, 696-707. |
[17] | Demidchik V, Maathuis FJM (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development.New Phytol 175, 387-404. |
[18] | Dietrich P, Anschütz U, Kugler A, Becker D (2010). Physiology and biophysics of plant ligand gated ion chan- nels.Plant Biol 12, 80-93. |
[19] | Dreyer I, Blatt MR (2009). What makes a gate? The ins and outs of Kv-like K+ channels in plants.Trends Plant Sci 14, 383-390. |
[20] | Dreyer I, Uozumi N (2011). Potassium channels in plant cells. FEBS J 278, 4293-4303. |
[21] | Duan RH, Ma Q, Zhang JL, Hu J, Bao AK, Wei L, Wang Q, Luan S, Wang SM (2015). The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyteSuaeda salsa under saline condition. Plant Soil 395, 173-187. |
[22] | Duby G, Hosy E, Fizames C, Alcon C, Costa A, Sentenac H, Thibaud JB (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ ch- annels.Plant J 53, 115-123. |
[23] | Formentin E, Varotto S, Costa A, Downey P, Bregante M, Naso A, Picco C, Gambale F, Schiavo FL (2004). DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1.FEBS Lett 573, 61-67. |
[24] | Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005). Rice K+ uptake channel OsAKT1 is sensitive to salt stress.Planta 221, 212-221. |
[25] | Gambale F, Uozumi N (2006). Properties of Shaker-type potassium channels in higher plants.J Membrane Biol 210, 1-19. |
[26] | Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R (2009). Heteromeric AtKC1-AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions.J Biol Chem 284, 21288-21295. |
[27] | Gierth M, Mäser P (2007). Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis.FEBS Lett 581, 2348-2356. |
[28] | Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51, 71-81. |
[29] | Grefen C, Blatt MR (2012). Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1?Plant Physiol 159, 915-919. |
[30] | Han M, Wu W, Wu WH, Wang Y (2016). Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions.Mol Plant 9, 437-446. |
[31] | Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000). Functional characterization of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression inXenopus oocytes. Planta 210, 723-731. |
[32] | Hedrich P (2012). Ion channels in plants.Physiol Rev 92, 1777-1811. |
[33] | Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998). A role for the AKT1 potassium channel in plant nutrition.Science 280, 918-921. |
[34] | Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Paneque M, Chen Z, Johansson I, Blatt MR (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis.Plant Cell 21, 2859-2877. |
[35] | Horie T, Hauser F, Schroeder JI (2009). HKT transporter- mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants.Trends Plant Sci 14, 660-668. |
[36] | Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, Gaillard I, Zimmermann S, Sentenac H, Véry AA (2011). AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity.Plant J 67, 570-582. |
[37] | Kronzucker HJ, Britto DT (2011). Sodium transport in plants: a critical review.New Phytol 189, 54-81. |
[38] | Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996). Tissue-specific expression of ArabidopsisAKT1 gene is consistent with a role in K+ nutrition. Plant J 9, 195-203. |
[39] | Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011). Mechanistic analysis of AKT1 regulation by the CBL- CIPK-PP2CA interactions.Mol Plant 4, 527-536. |
[40] | Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel.Proc Natl Acad Sci USA 104, 15959-15964. |
[41] | Li J, Long Y, Qi GN, Xu ZJ, Wu WH, Wang Y (2014). The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex.Plant Cell 26, 3387-3402. |
[42] | Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis.Proc Natl Acad Sci USA 103, 12625-12630. |
[43] | Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009). Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress.Proc Natl Acad Sci USA 19, 667-676. |
[44] | Maathuis FJM (2009). Physiological functions of mineral macronutrients.Curr Opin Plant Biol 12, 250-258. |
[45] | Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen SX (2003). Transcriptome analysis of root trans- porters reveals participation of multiple gene families in the response to cation stress.Plant J 35, 675-692. |
[46] | Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997). Roles of higher plant K+ channels.Plant Physiol 114, 1141-1149. |
[47] | Maathuis FJM, Sanders D (1993). Energization of potassium uptake in Arabidopsis thaliana. Planta 191, 302-307. |
[48] | Mahouachi J, Socorro AR, Talon M (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant Soil 281, 137-146. |
[49] | Martinez-Cordero MA, Martinez V, Rubio F (2005). High- affinity K+ uptake in pepper plants.J Exp Bot 56, 1553-1562. |
[50] | Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014a). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.J Plant Physiol 171, 688-695. |
[51] | Nieves-Cordones M, Caballero F, Martínez V, Rubio F (2012). Disruption of theArabidopsis thaliana inward- rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53, 423-432. |
[52] | Nieves-Cordones M, Chavanieu A, Jeanguenin L, Alcon C, Szponarski W, Estaran S, Cherel I, Zimmermann S, Sentenac H, Gaillard I (2014b). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol 164, 1415-1429. |
[53] | Nieves-Cordones M, Gaillard I (2014). Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.Plant Signal Behav 9, 10. |
[54] | Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrlch R (1999). Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism.Proc Natl Acad Sci USA 96, 12186-12191. |
[55] | Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003). Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant.Plant Mol Biol 51, 773-787. |
[56] | Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010). High- affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low-potassium conditions.Plant Physiol 153, 863-875. |
[57] | Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F (2015). The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots.Plant Physiol 169, 2863-2873. |
[58] | Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002). AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx.Proc Natl Acad Sci USA 99, 4079-4084. |
[59] | Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Ara- bidopsis. Plant J 74, 258-266. |
[60] | Riedelsberger J, Sharma T, Gonzalez W, Gajdanowicz P, Morales-Navarro SE, Garcia-Mata C, Mueller-Roeber B, Gonzalez-Nilo FD, Blatt MR, Dreyer I (2010). Distri- buted structures underlie gating differences between the kin channel KAT1 and the K out channel SKOR.Mol Plant 3, 236-245. |
[61] | Sano T, Becker D, Ivashikina N, Wegner LH, Zimmer- mann U, Roelfsema MRG, Nagata T, Hedrich R (2007). Plant cells must pass a K+ threshold to re-enter the cell cycle.Plant J 50, 401-413. |
[62] | Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663-665. |
[63] | Shabala S (2003). Regulation of potassium transport in leaves: from molecular to tissue level.Ann Bot 92, 627-634. |
[64] | Shabala S, Cuin TA, Pottosin I (2010). Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 15, 1993-1999. |
[65] | Shin R, Schachtman DP (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation.Proc Natl Acad Sci USA 101, 8827-8832. |
[66] | Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol 113, 909-918. |
[67] | Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001). Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125, 604-614. |
[68] | Wang P, Guo Q, Wang Q, Zhou XR, Wang SM (2015). PtAKT1 maintains selective absorption capacity for K+ over Na+ in halophyte Puccinellia tenuiflora under salt stress. Acta Physiol Plant 37, 100. |
[69] | Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebeeb RE (2004). The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China.J Arid Environ 56, 525-539. |
[70] | Wang XP, Chen LM, Liu WX, Shen LK, Wang FL, Zhou Y, Zhang D, Wu WH, Wang Y (2016). AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis.Plant Physiol 170, 2264-2277. |
[71] | Wang Y, He L, Li HD, Xu J, Wu WH (2010). Potassium channel alpha-subunit AtKC1 negatively regulates AKT1- mediated K+ uptake in Arabidopsis roots under low-K+ stress.Cell Res 20, 826-837. |
[72] | Wang Y, Wu WH (2013). Potassium transport and signaling in higher plants.Annu Rev Plant Biol 64, 451-476. |
[73] | Ward JM, Mäser P, Schroeder JI (2009). Plant ion channels: gene families, physiology, and functional genomics analyses.Annu Rev Physiol 71, 59-82. |
[74] | Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB (2015a). Sodium chloride stimulates growth and alleviates sorbitol- induced osmotic stress in sugar beet seedlings.Plant Growth Regul 75, 307-316. |
[75] | Wu GQ, Shui QZ, Wang CM, Zhang JL, Yuan HJ, Li SJ, Liu ZJ (2015b). Characteristics of Na+ uptake in sugar beet (Beta vulgaris L.) seedlings under mild salt conditions. Acta Physiol Plant 37, 70. |
[76] | Xia JH, Kong DD, Xue SW, Tian W, Li N, Bao F, Du J, Wang Y, Pan XJ, He YK (2014). Nitric oxide negatively regulates AKT1-mediated potassium uptake through mo- dulating vitamin B6 homeostasis in Arabidopsis.Proc Natl Acad Sci USA 111, 16196-16201. |
[77] | Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis.Cell 125, 1347-1360. |
[78] | Xu J, Tian XL, Eneji AE, Li ZH (2014). Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton(Gossypium hirsutum). Gene 545, 61-71. |
[79] | Zhang JL, Flowers TJ, Wang SM (2010). Mechanism of sodium uptake by roots of higher plants.Plant Soil 326, 45-60. |
[80] | Zimmermann S, Talke I, Ehrhardt T, Nast G, Müllerröber B (1998). Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells.Plant Physiol 116, 879-890. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||