植物学报 ›› 2016, Vol. 51 ›› Issue (5): 601-608.doi: 10.11983/CBB16003

• 研究报告 • 上一篇    下一篇

茄子分子遗传图谱的构建及果实性状的QTL定位

谢立峰1,2, 李烨1, 李景富2,*(), 李宁3,*()   

  1. 1哈尔滨市农业科学院, 哈尔滨 150028
    2东北农业大学园艺学院, 哈尔滨 150030
    3湖北省农业科学院经济作物研究所, 武汉 430064
  • 收稿日期:2016-01-06 接受日期:2016-04-26 出版日期:2016-09-01 发布日期:2016-09-27
  • 通讯作者: 李景富,李宁 E-mail:lijf_2005@126.com;n.li@msn.com
  • 作者简介:

    # 共同第一作者

  • 基金资助:
    国家科技支撑计划(No.2012BAD02B00, No.2012BAD02B02)

Construction of a Genetic Map and QTL Mapping of Fruit-related Traits in Eggplant (Solanum melongena)

Lifeng Xie1,2, Ye Li1, Jingfu Li2*, Ning Li3*   

  1. 1Harbin Academy of Agricultural Sciences, Harbin 150028, China
    2College of Horticulture, Northeast Agricultural University, Harbin 150030, China
    3Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
  • Received:2016-01-06 Accepted:2016-04-26 Online:2016-09-01 Published:2016-09-27
  • Contact: Li Jingfu,Li Ning E-mail:lijf_2005@126.com;n.li@msn.com
  • About author:

    # Co-first authors

摘要:

以茄子(Solanum melongena)材料09-101-M和10TL-102-F4-1的重组自交系(RIL)为作图群体, 构建总长度为991.7 cM、共包含16个连锁群157个位点、平均图距为6.32 cM的遗传图谱。应用复合区间作图法(CIM), 共检测到18个与茄子果实性状相关的QTLs, 其中10个为主效QTLs, 8个QTLs在两年两点的实验中能够被重复检测到。在所有QTLs中, 控制果重的QTL fw1.1的效应值最大, 为23.8%-31.6%, 被定位在LG01 (E09)上E25M34-E33M57b区域内; 果长、果径与果重显著相关, 且控制果长、果径与果重的QTL位于同一连锁群的相同区域。

Abstract:

A linkage map of eggplant (Solanum melongena) was constructed for an intraspecific RIL population derived from a cross between 09-101-M and 10TL-102-F4-1. The map contains 157 markers, encompasses 16 linkage groups, spanning 991.7 cM and spaced at an average interval of 6.32 cM. Composite interval mapping analysis with genotypic data from 157 molecular markers revealed the positions of 18 quantitative trait loci (QTL) for fruit-related traits. Ten of the QTLs identified were major QTLs, and 8 QTLs in corresponding positions were detected in both experimental locations and years. In all QTLs, the effect value of QTL fw1.1, located on LG01 (E09) E25M34-E33M57b and controlling fruit weight was the largest, reaching 23.8% to 31.6%. Fruit length and fruit diameter were significantly correlated with fruit weight, and the QTLs controlling fruit length, fruit diameter and fruit weight were in similar map positions.

表1

茄子果实性状调查标准"

Traits Investigation standard
Fruit length (fl) Length of 10 fruits per genotype were measured (in cm), and the mean fl for each genotype was used for analysis
Fruit diameter (fd) Width of 10 fruits per genotype were measured (in cm), and the mean fd for each genotype was used for analysis
Fruit shape index (fsi) Fruit shape index was calculated as the ratio between length and diameter (fl/fd)
Fruit weight (fw) Weight of 10 fruits per genotype were measured (in g), and the mean fw for each genotype was used for analysis
Fruit anthocyanin intensity (fai) Fruit anthocyanin intensity was scored the degree of pigmentation in the purple fruits only on a scale of 1 to 7 (1=green-white; 3=light purple; 5=purple; 7=dark purple)
Fruit calyx anthocyanin intensity (fcai) Fruit calyx anthocyanin intensity was evaluated on a 1 to 7 scale like fai

表2

茄子09-101×10TL-102亲本及其后代表型值的方差分析(ANOVA)"

Traits 09-101 10TL-102 F1
fl 39.2±0.92 a 6.4±0.74 b 22.1±4.12 a
fd 3.0±0.08 a 5.2±0.11 b 4.2±0.42 a
fsi 13.5±0.87 a 1.18±0.78 b 6.6±0.78 a
fw 140±2.12 a 45±0.98 b 96.1±14.1 b
fai 7±0.01 a 1±0.01 b 4.1±1.02 a
fcai 7±0.01 a 1±0.01 b 3.82±1.13 a

表3

茄子RIL群体中各果实相关性状间的相关性分析"

Traits fl fd fsi fw fai
fd 0.498**
fsi 0.803** 0.632**
fw 0.892** 0.843** 0.376*
fai 0.010 -0.128 -0.014 0.011
fcai 0.007 0.009 0.035 0.102 0.113

图1

茄子09-101×10TL-102分子遗传图谱及其QTL定位 粗体标记为EW2009图谱上的公共标记。"

表4

利用复合区间作图法(CIM)检测到的与果实形状相关的QTL"

Traits QTLs Years/Location Marker interval QTL position Peak LOD Addition effect R2
fl fl1.1
fl1.1
fl1.1
fl2.1
fl2.1
fl2.1
fl6.1
fl9.1
fl9.1
fl9.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-HRB
2013-HRB
2014-HRB
2014-WUH
E25M34-E33M57b
E25M34-E33M57b
E25M34-E33M57b
E40M47f-E37M60
E37M47c-E37M60
E37M47c-E37M60
E35M47a-E35M36
emh03G07-E38M59a
E16M20-E38M59a
E16M20-E38M59a
62.3
62.3
62.3
39.2
39.2
39.2
23.6
12.9
12.9
12.9
5.02
5.13
5.84
4.02
4.68
4.21
4.13
7.89
7.40
7.52
0.83
0.78
0.93
0.82
0.89
0.76
0.32
0.33
0.31
0.40
13.2
13.4
14.2
13.6
13.8
13.4
5.2
20.3
18.9
13.1
fd fd8.1
fd9.1
fd9.1
fd9.1
fd13.1
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
emd01C04-E40M26
E16M20-E38M59a
E16M20-E38M59a E16M20-E38M59a
E35M48-E33M33
84.6
15.8
15.8
15.8
45.2
3.98
8.31
9.02
6.23
5.03
0.21
0.23
0.38
0.34
0.12
9.8
21.3
20.2
27.9
4.3
fsi fsi3.1
fsi3.1
fsi3.1
fsi12.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
emf01M12-E13M18
emf01M12-E13M18
emf01M12-E13M18
E26M35-E35M32
39.0
39.0
39.0
23.6
4.02
3.95
3.88
3.20
0.32
0.54
0.38
-0.47
9.8
13.2
12.1
8.9
fw fw1.1
fw1.1
fw1.1
fw9.1
fw9.1
2013-HRB
2014-HRB
2014-WUH
2014-HRB
2014-WUH
E25M34-E33M57b
E25M34-E33M57b
E25M34-E33M57b E16M17-E38M59a
E16M17-E44M47a
63.5
63.5
63.5
14.2
14.2
12.35
11.63
15.17
9.81
9.23
0.24
0.27
0.26
0.31
0.52
25.4
23.8
31.6
13.7
14.8
fai fai2.1
fai10.1
fai11.1
fai11.1
fai11.1
fai16.1
2013-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
E30M47a-E35M17b
E35M47d-E12M23
E35M54a-E35M59
E35M54a-E35M59
E35M54a-E35M59
E17M55-E21M23
78.1
96.3
32.5
32.5
32.5
14.2
3.15
3.32
13.08
12.20
10.52
3.18
-0.15
-0.17
0.82
0.74
1.18
-0.31
5.3
6.9
20.9
18.7
10.1
4.2
fcai fcai8.1
fcai8.1
fcai8.1
fcai8.2
fcai8.2
fcai8.2
fcai10.1
2013-HRB
2014-HRB
2014-WUH
2013-HRB
2014-HRB
2014-WUH
2014-WUH
E38M43-emd03D09
E38M43-emd03D09
E38M43-emd03D09
E33M46-E23M60a
E33M46-E23M60a
E33M46-E23M60a
E43M54-E36M59
22.1
22.1
22.1
14.7
14.7
14.7
42.1
12.62
10.33
10.95
5.22
5.18
5.26
3.21
0.33
0.08
0.46
0.19
0.16
0.14
0.22
25.7
20.4
21.3
11.1
11.1
11.3
4.4
1 曹必好, 雷建军, 孙秀东, 陈国菊, 孟成民 (2006). 茄子 RAPD分子标记图谱的构建. 园艺学报 33, 1092-1092.
2 黄锐明, 陈国良, 谢晓凯, 卢永奋, 卢海强 (2006a). 茄子果径遗传效应初探. 长江蔬菜 9, 45-46.
3 黄锐明, 谢晓凯, 卢永奋, 卢海强, 柳江海 (2006b). 茄子果长遗传效应的初步研究. 广东农业科学 7, 25-26.
4 黄晓梅, 王傲雪, 许向阳, 李景富, 李宁 (2010). 番茄遗传图谱构建和抗晚疫病基因Ph-2的QTL分析. 园艺学报 37, 1085-1092.
5 李怀志 (2011). 茄子遗传连锁图谱构建及果实相关性状QTL 定位. 博士论文. 上海: 上海交通大学. pp. 65-66.
6 李宁, 李烨, 姚明华, 谢立峰, 张环宇 (2015). 茄子遗传图谱构建及重要性状分子定位的研究进展. 分子植物育种 9, 2127-2134.
7 李锡香, 朱德蔚 (2006). 茄子种质资源描述规范和数据标准. 北京: 中国农业出版社. pp. 11-21.
8 刘进生, Phatak SC (1992). 茄子功能性雄性不育的遗传及其与果紫色基因连锁关系的研究. 遗传学报 19, 349-354.
9 乔军, 陈钰辉, 王利英, 刘富中, 张映, 连勇 (2012). 茄子果形的QTL定位. 园艺学报 39, 1115-1122.
10 乔军, 刘富中, 陈钰辉, 连勇 (2011a). 茄子果萼色遗传研究. 植物遗传资源学报 12, 806-810.
11 乔军, 刘富中, 陈钰辉, 连勇 (2011b). 茄子果形遗传研究. 园艺学报 38, 2121-2130.
12 许向阳, 孟凡娟, 李景富 (2007). 番茄资源对叶霉病的抗性鉴定和SSR标记遗传变异分析. 植物病理学报 37, 520-527.
13 Food and Agriculture Organization of the United Nations (FAO) (2013). FAO STAT. .
14 Foolad MR (1999). Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping.Genome 42, 727-734.
15 Frary A, Doganlar S, Daunay MC, Tanksley SD (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species.Theor Appl Genet 107, 359-370.
16 Frary A, Frary A, Daunay MC, Huvenaars K, Mank R, Doğanlar S (2014). QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis.Euphytica 197, 211-228.
17 Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012). Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets.Theor Appl Genet 125, 47-56.
18 Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014). Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world.DNA Res 21, 649-660.
19 Janick J, Topoleski LD (1963). Inheritance of fruit color in eggplant (Solanum melongena).Proc Am Soc Hort Sci 83, 547-558.
20 Kosambi DD (1943). The estimation of map distances from recombination values. Annu Eugenics 12, 172-175.
21 Nunome T, Ishiguro K, Yoshida T, Hirai M (2001). Mapping of fruit shape and color development traits in eggplant (Solanum melongena L.) based on RAPD and AFLP markers.Breeding Sci 51, 19-26.
22 Nunome TNS, Izumi K, Kanamori H, Koji M, Hirotaka Y, Akio O, Hiroyuki F (2009). Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.).Theor Appl Genet 119, 1143-1153.
23 Van Ooijen JW (2006). JoinMap® 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Population. Wageningen, Kyazma B. V.
24 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs.J Hered 93, 77-78.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高翠;陈玉霞;包颖;冯旻;路安民. 白穗花有性器官与胚胎发育形态的研究 [J]. 植物学报, 2010, 45(06): 705 -712 .
[2] 蒋高明. 全球大气二氧化碳浓度升高对植物的影响[J]. 植物学报, 1995, 12(04): 1 -7 .
[3] 汤彦承. 国际植物命名法规简介(V)[J]. 植物学报, 1984, 2(04): 51 -57 .
[4] 徐继. 保护固氮酶免受氧破坏的蛋白Fe—S蛋白Ⅱ[J]. 植物学报, 1986, 4(12): 1 -4 .
[5] . 国外大刊重要论文简介[J]. 植物学报, 2001, 18(05): 633 .
[6] 黄兆祥 郑珍贵 朱笃. 池杉—水稻系统的生态效应(1)系统中池杉的生长特性[J]. 植物学报, 1996, 13(02): 48 -51 .
[7] 谷瑞升 刘群录 陈雪梅 蒋湘宁. 木本植物蛋白提取和SDS-PACE分析方法的比较和优化[J]. 植物学报, 1999, 16(02): 171 -177 .
[8] 蒋高明. LI-6400光合作用测定系统:原理、性能、基本操作与常见故障的排除[J]. 植物学报, 1996, 13(增刊): 72 -76 .
[9] 李玲 罗蕴秀 何建辉 潘瑞炽. GL生根剂促进木本植物插枝生根[J]. 植物学报, 1996, 13(增刊): 63 -65 .
[10] 王慧, 高中杰, 张丹, 程浩, 喻德跃. 应用关联分析鉴定大豆对斜纹夜蛾的抗性基因[J]. 植物学报, 2011, 46(5): 514 -524 .