植物学报 ›› 2016, Vol. 51 ›› Issue (3): 377-386.doi: 10.11983/CBB15101

• 专题论坛 • 上一篇    下一篇

拟南芥双功能酶SAL1生物学功能的研究进展

席红梅1,2, 徐文忠1, 麻密1,,A;*()   

  1. 1中国科学院植物研究所北方资源植物重点实验室, 北京 100093
    2中国科学院大学生命科学学院, 北京 100049
  • 收稿日期:2015-06-09 接受日期:2015-11-01 出版日期:2016-05-01 发布日期:2016-05-24
  • 通讯作者: 麻密 E-mail:mami@ibcas.ac.cn
  • 作者简介:

    ? 共同第一作者

  • 基金资助:
    国家自然科学基金(No.31170164)

Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1

Hongmei Xi1, 2, Wenzhong Xu1, Mi Ma1*   

  1. 1Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-06-09 Accepted:2015-11-01 Online:2016-05-01 Published:2016-05-24
  • Contact: Ma Mi E-mail:mami@ibcas.ac.cn
  • About author:

    ? These authors contributed equally to this paper

摘要:

拟南芥(Arabidopsis thaliana)中与盐(salt)胁迫相关的基因SAL1所编码的蛋白是一种同时具有3'(2'),5'-二磷酸核苷酸酶和多磷酸肌醇1-磷酸酶活性的双功能酶。双功能酶SAL1最初被认定为逆境胁迫和脱落酸(ABA)信号响应途径的负调控因子, 参与植物对逆境胁迫响应的调控。近年来, 利用正向遗传学突变体表型筛选的方法, 越来越多的研究表明SAL1有着广泛的生物学功能。该文综述了SAL1的结构、定位和功能的研究进展, 介绍了SAL1对植物形态发育、矿质营养代谢、逆境响应以及植物激素信号调节等产生的影响及相关机制, 并提出未来的研究方向。

Abstract:

SAL1 was previously identified as a negative regulator of stress and abscisic acid (ABA) signaling that mediates the Arabidopsis response to adverse environmental stresses. Forward genetic methods have produced a growing body of evidence showing that SAL1 has wide biological functions. Here we review the structure, location and function of SAL1 and its effect on plant morphology and development, mineral nutrition, response to adverse environmental conditions and plant hormone-signaling response in Arabidopsis. We discuss possible future directions that might provide valuable information for further research on SAL1.

图2

SAL1双功能酶对植物生理过程的调控模式(SAL1双功能酶通过催化PAP或Ins(1,4)P2/Ins(1,3,4)P3的降解参与调控植物的各项生理活动。PAP既可作用于XRN核酸外切酶的活性抑制RNA沉默过程, 也可调控基因表达以及矿质营养元素和植物激素的代谢, 从而影响植物生长发育及环境应答的多项生理过程。Ins(1,4)P2/Ins(1,3,4)P3则可通过Ins(1,4,5)P3-Ca2+信号通路影响植物激素信号响应并调控植物的生长发育。某些生理过程如激素信号响应则受PAP和Ins(1,4)P2/Ins(1,3,4)P3的共同调控。图中箭头表示促进作用, 竖线表示抑制作用, 虚线表示可能作用但缺乏直接证据, 问号表示尚未研究的问题。)"

[1] Chen H, Xiong L (2010). The bifunctional abiotic stress signaling regulator and endogenous RNA silencing sup- pressor FIERY1 is required for lateral root formation.Plant Cell Environ 33, 2180-2190.
[2] Chen H, Xiong L (2011). Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation.Plant Signal Behav 6, 123-125.
[3] Chen H, Zhang B, Hicks LM, Xiong L (2011). A nucleotide metabolite controls stress-responsive gene expression and plant development.PLoS One 6, e26661.
[4] Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.Plant Cell 23, 3992-4012.
[5] Gil-Mascarell R, Lopez-Coronado JM, Belles JM, Serrano R, Rodriguez PL (1999). The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phospha- tase.Plant J 17, 373-383.
[6] Glaser HU, Thomas D, Gaxiola R, Montrichard F, Surdinkerjan Y, Serrano R (1993). Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene.EMBO J 12, 3105-3110.
[7] Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007). Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors.Plant Cell 19, 3451-3461.
[8] Hirsch J, Misson J, Crisp PA, David P, Bayle V, Estavillo GM, Javot H, Chiarenza S, Mallory AC, Maizel A, Declerck M, Pogson BJ, Vaucheret H, Crespi M, Desnos T, Thibaud MC, Nussaume L, Marin E (2011). A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'→3' exoribonuclease (XRN) activities in Arabidopsis thaliana roots.PLoS One 6, e16724.
[9] Kim BH, von Arnim AG (2009). FIERY1 regulates light- mediated repression of cell elongation and flowering time via its 3'(2'),5'-bisphosphate nucleotidase activity.Plant J 58, 208-219.
[10] Lee BR, Huseby S, Koprivova A, Chételat A, Wirtz M, Mugford S, Navid E, Brearley C, Saha S, Mithen R, Hell R, Farmer E, Kopriva S (2012). Effects of fou8/fry1 muta- tion on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response?PLoS One 7, e39425.
[11] Lee H, Xiong L, Ishitani M, Stevenson B, Zhu JK (1999). Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant.Plant J 17, 301-308.
[12] Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013). Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance.J Exp Bot 64, 1381-1392.
[13] Murguia JR, Belles JM, Serrano R (1995). A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate ac- tivation.Science 267, 232-234.
[14] Murguia JR, Belles JM, Serrano R (1996). The yeast HAL2 nucleotidase is an in vivo target of salt toxicity.J Biol Chem 271, 29029-29033.
[15] Neuwald AF, Krishnan BR, Brikun I, Kulakauskas S, Suziedelis K, Tomcsanyi T, Leyh TS, Berg DE (1992). cysQ, a gene needed for cysteine synthesis in Esch- erichia coli K-12 only during aerobic growth.J Bacteriol 174, 415-425.
[16] Quintero FJ, Garciadeblas B, Rodriguez-Navarro A (1996). The SAL1 gene of Arabidopsis, encoding an enzyme with 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increa- ses salt tolerance in yeast.Plant Cell 8, 529-537.
[17] Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL (2010). The RON1/FRY1/SAL1 gene is required for leaf morphogene- sis and venation patterning in Arabidopsis.Plant Physiol 152, 1357-1372.
[18] Rodriguez VM, Chetelat A, Majcherczyk P, Farmer EE (2010). Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves.Plant Physiol 152, 1335-1345.
[19] Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006). A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance.Plant Cell Environ 29, 269-281.
[20] Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Harvey Millar A, von Caemmerer S, Pogson BJ (2009). The nucleotidase/phosphatase SAL1 is a negative regu- lator of drought tolerance in Arabidopsis.Plant J 58, 299-317.
[21] Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK (2001). FIERY1 encoding an inositol polyphosphate 1- phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis.Genes Dev 15, 1971-1984.
[22] Xiong L, Lee H, Huang R, Zhu JK (2004). A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance.Plant J 40, 536-545.
[23] Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleine-Vehn J, Lofke C, Teichmann T, Bielach A, Cannoot B, Hoyerova K, Chen X, Xue HW, Benkova E, Zazimalova E, Friml J (2011). Inositol trisphosphate- induced Ca2+ signaling modulates auxin transport and PIN polarity.Dev Cell 20, 855-866.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟繁静 韩玉珍. 植物成花生理与玉米赤霉烯酮的研究[J]. 植物学报, 1995, 12(专辑3): 18 -29 .
[2] 吴剑蜂. 南通狼山地区的地衣植物[J]. 植物学报, 1993, 10(01): 62 .
[3] . 国外大刊重要论文简介[J]. 植物学报, 2000, 17(05): 478 .
[4] 王峥峰 张军丽 李鸣光 王伯荪 何兴金 彭少麟. 植物分子生态学进展(Ⅰ)——遗传结构和杂交(英)[J]. 植物学报, 2001, 18(06): 635 -642 .
[5] 赵玉华. 抗寒剂CR-4 在克服我县水稻低温烂秧中的作用[J]. 植物学报, 1994, 11(特辑): 97 -99 .
[6] 白玫, 吴鸿. 裂生间隙、溶生间隙和裂溶生间隙[J]. 植物学报, 2015, 50(6): 765 -767 .
[7] 景丹龙, 马江, 张博, 韩逸洋, 刘志雄, 陈发菊. 红花玉兰MwAG基因在花发育不同时期的表达[J]. 植物学报, 2013, 48(2): 145 -150 .
[8] 李相敢. 崂山麻栎林种群特征及生物量测定[J]. 植物生态学报, 1987, 11(1): 21 -31 .
[9] 苗保河, 李向东, 刘波, 何启平, 朱陶, 刘兴坦, 朱启玉, 乔广法, 樊廷安, 陈成君, 董庆裕, 余松烈. 波浪冠层栽培模式对高油大豆叶片活性氧代谢和膜脂过氧化的影响[J]. 植物生态学报, 2008, 32(3): 673 -680 .
[10] 任坚毅, 林玥, 岳明. 太白山红桦种子的萌发特性[J]. 植物生态学报, 2008, 32(4): 883 -890 .