Xuan Jing, Fu Qidi, Xie Gan, Xue Kai, Luo Hairui, Wei Ze, Zhao Mingyue, Zhi Liang, Wan Huawei, Gao Jixi, Li Min
. Construction of intelligent identification model and application for grassland plants in northern China
#br#[J]. Chinese Bulletin of Botany, 0
: 0
-0
.
DOI: 10.11983/CBB24027
李敏 (2018). “花伴侣”: 人工智能时代知识服务的新媒介. 出版参考 (08): 23–24.
许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020). 国内8款常用植物识别软件的识别能力评价. 生物多样性 28, 524–533.
杨旭光 (2022). 基于卷积神经网络模型水生植物分类识别研究与系统研发. 山东农业大学.
张勇辉, 冯琦胜, 梁天刚, 高新华, 黄晓东, 孙德伟, 吴安东 (2023). 草地资源调查与智能分析系统简介. 草业科学 40(08), 2171–2178.
LeCun Y, Bengio Y, Hinton G (2015). Deep learning. Nature 521, 436–444.
Liu Z, Wang J, Tian Y, Dai S (2019). Deep learning for image-based large-flowered chrysanthemum cultivar recognition. Plant Methods 15, 146. https://doi.org/10.1186/s13007-019-0532-7.
Joly A., Go?au H., Botella C., Glotin H, Bonnet P, Vellinga W-P, Planqué R, Müller H (2018). Overview of LifeCLEF 2018: A Large-Scale Evaluation of Species Identification and Recommendation Algorithms in the Era of AI. In: Bellot P, Trabelsi C, Mothe J, Murtagh F, Nie JY, Soulier L, SanJuan E, Cappellato L, Ferro N (Eds.) CLEF 2018: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer Science, 11018, 247–266. https: //doi.org/10.1007/978-3-319-98932-7_24
Szegedy C, Loffe S, Vanhoucke V, Alemi A (2016a). Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Singh S, Markovitch S (Eds.). AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, 4278–4284.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016b). Rethinking the Inception Architecture for Computer Vision. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2818–2826.
Grinblat L G, Uzal C L, Larese G M, Granitto P M (2016). Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture 127, 418–424.
Ledford H (2017). Artificial intelligence identifies plant species for science. Nature. https://doi.org/10.1038/nature.2017.22442
Marco S, Michael R, David B, W?ldchen J, M?der P (2019). Image-based classification of plant genus and family for trained and untrained plant species. BMC bioinformatics 20: 4.
Nguyen T H, Nguyen T L, Sidorov D N, Dreglea A I (2017). Machine learning algorithms application to road defects classification. Intelligent Decision Technologies 12(1): 59–66.
Cerutti G, Tougne L, Mille J, Vacavant A, Coquin D (2013). Understanding leaves in natural images – A model-based approach for tree species identification. Computer Vision and Image Understanding 117(10): 1482–1501.
Kumar N, Belhumeur P N, Biswas A, Jacobs D W, Kress W J, Lopez I C, Soares J V B (2012). Leafsnap: A computer vision system for automatic plant species identification. In: Fitzgibbon A., Lazebnik S., Perona P., Sato Y., Schmid C. (Eds.) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science 7573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33709-3_36