[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]An Artificial Intelligence Model for Identifying Grassland Plants in Northern China
Received date: 2024-02-23
Accepted date: 2024-06-21
Online published: 2024-06-24
A large number of software applications for plant identification based on plant images have been developed in recent years. However, those applications are mostly used for identifying the common species countrywide, and thus cannot meet the needs of identifying region-specific vegetation types. In this study, we developed an artificial intelligence model for identifying the dominant plants in Hulunbeier and Xilinhot grassland in Inner Mongolia, based on the image datasets in the Plant Photo Bank of China. The Top5 accuracy of this model reaches 94.6% in the actual field identification tests. Our model provides a new method for the intelligent identification of the major plant species in a specific area.
Key words: grassland plants; artificial intelligence; image recognition; Hulunbeier; Xilinhot
Jing Xuan , Qidi Fu , Gan Xie , Kai Xue , Hairui Luo , Ze Wei , Mingyue Zhao , Liang Zhi , Huawei Wan , Jixi Gao , Min Li . An Artificial Intelligence Model for Identifying Grassland Plants in Northern China[J]. Chinese Bulletin of Botany, 2025 , 60(1) : 74 -80 . DOI: 10.11983/CBB24027
[1] | Cerutti G, Tougne L, Mille J, Vacavant A, Coquin D (2013). Understanding leaves in natural images—a model-based approach for tree species identification. Comput Vis Image Underst 117, 1482-1501. |
[2] | Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016). Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127, 418-424. |
[3] | Joly A, Go?au H, Botella C, Glotin H, Bonnet P, Vellinga WP, Planqué R, Müller H (2018). Overview of LifeCLEF 2018: a large-scale evaluation of species identification and recommendation algorithms in the era of AI. In: Bellot P, Trabelsi C, Mothe J, Murtagh F, Nie JY, Soulier L, SanJuan E, Cappellato L, Ferro N, eds. CLEF 2018: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Cham: Springer. pp. 247-266. |
[4] | Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JVB (2012). Leafsnap: a computer vision system for automatic plant species identification. In:Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, eds. Computer Vision-ECCV 2012. Lecture Notes in Computer Science 7573. Berlin, Heidelberg: Springer. pp. 502-516. |
[5] | LeCun Y, Bengio Y, Hinton G (2015). Deep learning. Nature 521, 436-444. |
[6] | Ledford H (2017). Artificial intelligence identifies plant species for science. Nature doi: 10.1038/nature.2017.22442. |
[7] | Liu ZL, Gao K, Tan Y, Dai SL, Song XB (2017). Identification of chrysanthemum cultivars based on unfolding image with LBP texture feature. In: Advances in Ornamental Horticulture of China 2017. Chengdu: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science, National Engineering Research Center for Floriculture. pp. 167-173. (in Chinese) |
刘芷兰, 高康, 田野, 戴思兰, 宋雪彬 (2017). 基于展开图像LBP纹理的菊花品种识别. 见: 中国观赏园艺研究进展2017. 成都: 中国园艺学会观赏园艺专业委员会, 国家花卉工程技术研究中心. pp. 167-173. | |
[8] | Liu ZL, Wang J, Tian Y, Dai SL (2019). Deep learning for image-based large-flowered chrysanthemum cultivar recognition. Plant Methods 15, 146. |
[9] | Nguyen TH, Nguyen TL, Sidorov DN, Dreglea AA (2018). Machine learning algorithms application to road defects classification. Intel Decis Technol 12, 59-66. |
[10] | Seeland M, Rzanny M, Boho D, W?ldchen J, M?der P (2019). Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, 4. |
[11] | Szegedy C, Loffe S, Vanhoucke V, Alemi A (2016a). Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Singh S, Markovitch S, eds. AAAI'17: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press. pp. 4278-4284. |
[12] | Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016b). Rethinking the inception architecture for computer vision. In:Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE. pp. 2818-2826. |
[13] | Wang J, Tian YK, Zhang RS, Liu ZL, Tian Y, Dai SL (2022). Multi-information model for large-flowered chrysanthemum cultivar recognition and classification. Front Plant Sci 13, 806711. |
[14] | Xu ZH, Liu SY, Zhao Y, Tu WQ, Chang ZF, Zhang ET, Guo J, Zheng D, Geng J, Gu GY, Guo CP, Guo LL, Wang J, Xu CY, Peng C, Yang T, Cui MQ, Sun WC, Zhang JT, Liu HT, Ba CQ, Wang HQ, Jia JC, Wu JZ, Xiao C, Ma KP (2020). Evaluation of the identification ability of eight commonly used plant identification application softwares in China. Biodivers Sci 28, 524-533. (in Chinese) |
许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020). 国内8款常用植物识别软件的识别能力评价. 生物多样性 28, 524-533. | |
[15] | Zhang RS, Tian Y, Zhang JM, Dai SL, Hou XG, Wang J, Guo Q (2021). Metric learning for image-based flower cultivars identification. Plant Methods 17, 65. |
[16] | Zhang YH, Feng QS, Liang TG, Gao XH, Huang XD, Sun DW, Wu AD (2023). Introducing a grassland resource survey and intelligent analysis system. Pratacultural Science 40, 2171-2178. (in Chinese) |
张勇辉, 冯琦胜, 梁天刚, 高新华, 黄晓东, 孙德伟, 吴安东 (2023). 草地资源调查与智能分析系统简介. 草业科学 40, 2171-2178. |
/
〈 |
|
〉 |