Exploring the Changes in Metabolites in Different Stages of Raw Lacquer Using Broad Targeted Metabolomics
Received date: 2023-02-27
Accepted date: 2023-09-19
Online published: 2023-10-10
Raw lacquer is a valuable natural coating material with exceptional properties, including heat, corrosion, and acid resistance, which make it an important resource in various industries. Revealing the changes in metabolites during its growth process of lacquer is the key to excavate its applications. We analyzed phloem sap samples of Toxicodendron vernicifluum at different developmental stages (based on the time of lacquer harvesting) using broad targeted metabolomic analysis technology, including principal component analysis, orthogonal partial least squares discriminant analysis, and cluster heat map analysis, to investigate the differences and changing patterns of metabolites. Our analysis identified 529 metabolites in raw lacquer, which can be classified into 13 major groups, including flavonoids, phenolic acids, alkaloids, tannins, sugars and alcohols, and lipids. Multivariate statistical analysis revealed that the metabolic characteristics of raw lacquer in the second, third, fourth, and fifth developmental stages were similar, but significantly different from those in the first stage. By comparing and analyzing the metabolites in raw lacquer at different developmental stages, we identified 92 common differentially abundant metabolites. Notably, flavonoid compounds primarily accumulated in raw lacquer during the first stage, while amino acids and their derivatives, sugars, and alcohols had relatively higher contents in raw lacquer at later stages. Our findings provide a comprehensive understanding of the metabolic characteristics of raw lacquer at different developmental stages, which could have significant implications for the development and utilization of lacquer resources.
Huiying Shang , Yunyan Zhai , Xiaomin Ge , Shuai Liu , Shanglin Wang , Tao Zhou , Guoqing Bai . Exploring the Changes in Metabolites in Different Stages of Raw Lacquer Using Broad Targeted Metabolomics[J]. Chinese Bulletin of Botany, 2024 , 59(1) : 66 -74 . DOI: 10.11983/CBB23024
[1] | 卜红宇, 韩峰, 郝美玲, 王昆鹏, 刘炳茹 (2021). 药用植物类黄酮生物合成调控的研究进展. 北方药学 18(7), 192-196. |
[2] | 陈虹霞 (2016). 漆树黄酮提取物的化学特征及生物活性研究. 博士论文. 北京: 中国林业科学研究院. pp. 101-108. |
[3] | 陈虹霞, 王成章 (2013). 漆树黄酮类化合物研究进展. 天然产物研究与开发 25, 1752-1758. |
[4] | 陈育涛, 黄婕 (2012). 生漆多糖生物学功能研究进展. 中国生漆 31(1), 23-24, 47. |
[5] | 邓毓芳, 刘显旋, 刘小林 (1982). 不同割期漆液的化学成分及叶片营养元素的变化. 中南林学院学报 2, 73-78. |
[6] | 杜予民, 王晓燕, 柳卫莉, 蒙缔亚 (1998). 高效液相色谱法分析生漆多糖中的单糖组成. 色谱 (2), 85-87. |
[7] | 傅淑颖 (2007). 漆树树皮的结构和生漆中漆酚含量随季节变化规律的研究. 硕士论文. 西安: 西北大学. pp. 44-51. |
[8] | 郭萌, 张晴, 闫丽萍, 毛明清, 房丽娜 (2018). 黄酮类化合物为主要活性成分的单味药和复方中药及其药理作用. 沈阳医学院学报 20, 558-561, 564. |
[9] | 洪雅萍, 谷梦雅, 高婷, 杨文文, 林宏政, 金珊, 王鹏杰, 叶乃兴 (2023). 福州单瓣茉莉和双瓣茉莉不同组织的广泛靶向代谢组学分析. 食品科学 44(8), 184-193. |
[10] | 李梅 (2012). 漆树树皮结构与漆酚及漆酚同系物含量随季节的变化关系. 硕士论文. 西安: 西北大学. pp. 43-44. |
[11] | 李艳, 任红艳, 张娟妮, 张婷婷, 覃瑶, 张飞龙 (2019). 漆树中黄酮类化合物的提取和生物活性应用研究. 中国生漆 38(4), 43-47. |
[12] | 林洁鑫, 王鹏杰, 金珊, 叶乃兴, 黄建锋, 颜廷宇, 郑德勇, 杨江帆 (2022). 基于广泛靶向代谢组学的不同产地红茶代谢产物比较分析. 食品工业科技 43(2), 9-19. |
[13] | 罗千洙, 郑南澈, 罗垠善 (2006). 漆树提取物的制备方法及包含该提取物的抗癌组合物. 中国专利, CN1289099C. 2006-12-13. |
[14] | 吕虎强, 李艳, 刘帅, 李东旭, 张飞龙 (2020). 生漆的生物学活性与结构修饰研究进展. 化学研究与应用 32, 896-904. |
[15] | 潘宇, 李顺祥, 傅超凡 (2014). 漆树的药理研究进展. 中成药 36, 593-597. |
[16] | 齐志文, 王成章, 蒋建新 (2018). 漆酚的生物化学活性及其应用进展. 生物质化学工程 52(4), 60-66. |
[17] | 孙祥玲, 吴国民, 孔振武 (2014). 生漆改性及其应用进展. 生物质化学工程 48(2), 41-47. |
[18] | 魏朔南, 李林, 赵喜萍, 赵猛, 胡正海 (2011). 漆树8个品种和5个野生居群HPLC指纹图谱分析. 西北植物学报 31, 620-627. |
[19] | 许永华, 卫宝瑞, 佐月, 殷乐, 方平, 巩金壮, 邓轲丹, 韩永忠, 杨鹤 (2022). 低温影响药用植物次生代谢产物积累研究进展. 分子植物育种 20, 1708-1715. |
[20] | 曾品涛, 李东旭, 廖梦, 余钺 (2020). 生漆漆酚HPLC指纹图谱研究. 中国生漆 39(3), 30-33, 41. |
[21] | 张娟妮, 任红艳, 李艳, 吕虎强, 张婷婷, 宋瑞雪, 张飞龙 (2021). 漆树的药用保健价值. 中国生漆 40(1), 40-43. |
[22] | 张娟妮, 任红艳, 张婷婷 (2017). 漆酚类衍生物研究进展. 中国生漆 36(2), 38-42. |
[23] | 张鹏, 廖声熙, 崔凯, 桂俊明, 赵薪程 (2013). 中国漆树资源与品种现状及产业发展前景. 世界林业研究 26(2), 65-69. |
[24] | 赵喜萍, 魏朔南 (2007). 中国生漆化学成分研究. 中国野生植物资源 (6), 1-4. |
[25] | Bai GQ, Chen C, Zhao CX, Zhou T, Li D, Zhou TH, Li WM, Lu Y, Cong XF, Jia Y, Li SF (2022). The chromosome-level genome for Toxicodendron vernicifluum provides crucial insights into Anacardiaceae evolution and urushiol biosynthesis. iScience 25, 104512. |
[26] | Chen W, Gong L, Guo ZL, Wang WS, Zhang HY, Liu XQ, Yu SB, Xiong LZ, Luo J (2013). A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 6, 1769-1780. |
[27] | Hanneken A, Lin FF, Johnson J, Maher P (2006). Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47, 3164. |
[28] | Kim JS, Kwon YS, Chun WJ, Kim TY, Sun JH, Yu CY, Kim MJ (2010). Rhus verniciflua Stokes flavonoid extracts have anti-oxidant, anti-microbial and α-glucosidase inhibitory effect. Food Chem 120, 539-543. |
[29] | Li MC, Zhang YQ, Meng CW, Gao JG, Xie CJ, Liu JY, Xu YN (2021). Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley—a review. J Ethnopharmacol 267, 113476. |
[30] | Lu R, Yoshida T, Nakashima H, Premanathan M, Aragaki R, Mimura T, Kaneko Y, Yamamoto N, Miyakoshi T, Uryu T (2000). Specific biological activities of Chinese lacquer polysaccharides. Carbohydr Polym 43, 47-54. |
[31] | Utpott M, Rodrigues E, Rios ADO, Mercali GD, Fl?res SH (2022). Metabolomics: an analytical technique for food processing evaluation. Food Chem 366, 130685. |
/
〈 | 〉 |