EXPERIMENTAL COMMUNICATIONS

Genome-wide Identification and Domestication Analysis of the Phytochrome PHY Gene Family in Gossypium

  • Jiaqi Gu ,
  • Fuhui Zhu ,
  • Peihao Xie ,
  • Qingying Meng ,
  • Ying Zheng ,
  • Xianlong Zhang ,
  • Daojun Yuan
Expand
  • 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
    2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
    3College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China

†These authors contributed equally to this paper

Received date: 2023-01-02

  Accepted date: 2023-07-08

  Online published: 2023-07-21

Abstract

Phytochrome is an important receptor for red and far-red light sensing in plants, and it plays a vital role in regulating the plant flowering period, improving crop yield potential and regulating plant stress resistance. Identification of PHY family genes in Gossypium, exploration of the patterns of inheritance and regulatory network of domestication and improvement, and identification of the key phytochrome genes in Gossypium, provides insights into the de novo domestication and breeding of early maturing Gossypium species. To identify the phytochrome genes of Gossypium, we used bioinformatics methods to analyze 5 phytochrome genes in Arabidopsis thaliana. Phylogenetic analysis showed that the PHY genes in Malvaceae species consisted of 4 subfamilies (PHYA, PHYB, PHYC and PHYE). Moreover, the domestication selection analysis of PHY genes among different populations of G. hirsutum showed that the domestication process of PHY genes could be divided into two stages: domestication and improvement. Furthermore, the gene expression of the PHY gene family was analyzed using leaf RNA-sequencing data obtained from wild and cultivar genotypes of G. hirsutum under short-day (SD) and long-day (LD) conditions. The results showed that the expression of GhPHYA1Dt and GhPHYB1Dt were significantly different between SD and LD conditions. After 14 hours of long-day treatment, the expression of GhPHYC1At and GHPHYE1At in the cultivar was significantly lower than that in wild species. These results lay a foundation for further study on domestication selection and functional mechanisms of Gossypium PHY genes and provide a theoretical basis for breeding new early maturing Gossypium varieties and de novo domestication.

Cite this article

Jiaqi Gu , Fuhui Zhu , Peihao Xie , Qingying Meng , Ying Zheng , Xianlong Zhang , Daojun Yuan . Genome-wide Identification and Domestication Analysis of the Phytochrome PHY Gene Family in Gossypium[J]. Chinese Bulletin of Botany, 2024 , 59(1) : 34 -53 . DOI: 10.11983/CBB23004

References

[1] 丁武思, 陈士瞻, 刘磊, 樊晓聪, 丁梦月, 孙广华, 王立建, 杨建平 (2021). 2个玉米光敏色素C基因的克隆及功能验证. 河南农业科学 50, 16-26.
[2] 房迈莼, 王小菁, 李洪清 (2005). 光对植物生物钟的调节. 植物学通报 22, 207-214.
[3] 惠婕, 黄丛林, 吴忠义, 张秀海 (2011). 拟南芥光敏色素基因PHYA转化菊花的研究. 江苏农业科学 39(2), 51-54.
[4] 李建平 (2013). 光敏色素D在拟南芥生长和发育中的功能与机理研究. 博士论文. 北京: 中国农业科学院. pp. 1-75.
[5] 李建平, 杨建平, 宋梅芳, 苏亮, 侯佩, 郝晓燕, 邵琳, 陈果, 足木热木, 黄全生 (2014). 拟南芥光敏色素D (AtphyD)在不同光质下的表达特性分析. 新疆农业科学 51, 305-310.
[6] 李全权 (2020). 玉米光敏色素C在光形态建成与开花中的功能解析. 博士论文. 泰安: 山东农业大学. pp. 1-131.
[7] 李壮, 马燕斌, 蔡应繁, 吴锁伟, 肖阳, 孟凡华, 付风铃, 黄玉碧, 杨建平 (2010). 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报 36, 779-787.
[8] 连欣 (2020). 棉花开花时间相关基因的挖掘与功能分析. 硕士论文. 泰安: 山东农业大学. pp. 1-78.
[9] 申慧敏, 吴年隆, 王亚敏, 王兴春 (2022). 谷子光敏色素家族基因的生物信息学及表达模式分析. 山西农业科学 50, 1-8.
[10] 魏俊梅 (2018). 棉花开花时间相关基因的挖掘鉴定与功能分析. 硕士论文. 泰安: 山东农业大学. pp. 1-57.
[11] 岳晶, 管利萍, 孟思远, 张静, 侯岁稳 (2015). 光敏色素信号通路中磷酸化修饰研究进展. 植物学报 50, 241-254.
[12] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平 (2012). 利用修饰光敏色素信号途径进行作物改良的可行性. 中国农业科学 45, 3249-3255.
[13] 赵翔, 赵青平, 杨煦, 慕世超, 张骁 (2015). 向光素调节植物向光性及其与光敏色素/隐花色素的相互关系. 植物学报 50, 122-132.
[14] Abdellatif KF, Khidr YA, El-Mansy YM, El-Lawendey MM, Soliman YA (2012). Molecular diversity of Egyptian cotton (Gossypium barbadense L.) and its relation to varietal development. J Crop Sci Biotechnol 15, 93-99.
[15] Argout X, Martin G, Droc G, Fouet O, Labadie K, Rivals E, Aury JM, Lanaud C (2017). The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies. BMC Genomics 18, 730.
[16] Ballaré CL, Pierik R (2017). The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ 40, 2530-2543.
[17] Bao Y, Hu GJ, Grover CE, Conover J, Yuan DJ, Wendel JF (2019). Unraveling cis and trans regulatory evolution during cotton domestication. Nat Commun 10, 5399.
[18] Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
[19] Briggs WR, Olney MA (2001). Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125, 85-88.
[20] Cai YF, Cai XY, Wang QL, Wang P, Zhang Y, Cai CW, Xu YC, Wang KB, Zhou ZL, Wang CX, Geng SP, Li B, Dong Q, Hou YQ, Wang H, Ai P, Liu Z, Yi FF, Sun MS, An GY, Cheng JR, Zhang YY, Shi Q, Xie YH, Shi XY, Chang Y, Huang FF, Chen Y, Hong SM, Mi LY, Sun Q, Zhang L, Zhou BL, Peng R, Zhang X, Liu F (2020). Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and de-a)layed gland morphogenesis. Plant Biotechnol J 18, 814-828.
[1] Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020a). TBtools: an integrative Toolkit developed for interactive analyses of big biological data. Mol Plant 13, 1194-1202.
[2] Chen M, Chory J (2011). Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21, 664-671.
[3] Chen ZJ, Sreedasyam A, Ando A, Song QX, De Santiago LM, Hulse-Kemp AM, Ding MQ, Ye WX, Kirkbride RC, Jenkins J, Plott C, Lovell J, Lin YM, Vaughn R, Liu B, Simpson S, Scheffler BE, Wen L, Saski CA, Grover CE, Hu GJ, Conover JL, Carlson JW, Shu SQ, Boston LB, Williams M, Peterson DG, McGee K, Jones DC, Wendel JF, Stelly DM, Grimwood J, Schmutz J (2020b). Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52, 525-533.
[4] Chun L, Kawakami A, Christopher DA (2001). Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 125, 1957-1966.
[5] Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
[6] Doebley JF, Gaut BS, Smith BD (2006). The molecular genetics of crop domestication. Cell 127, 1309-1321.
[7] Fang L, Gong H, Hu Y, Liu CX, Zhou BL, Huang T, Wang YK, Chen SQ, Fang DD, Du XM, Chen H, Chen JD, Wang S, Wang Q, Wan Q, Liu BL, Pan MQ, Chang LJ, Wu HT, Mei GF, Xiang D, Li XH, Cai CP, Zhu XF, Chen ZJ, Han B, Chen XY, Guo WZ, Zhang TZ, Huang XH (2017a). Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18, 33.
[8] Fang L, Wang Q, Hu Y, Jia YH, Chen JD, Liu BL, Zhang ZY, Guan XY, Chen SQ, Zhou BL, Mei GF, Sun JL, Pan ZE, He SP, Xiao SH, Shi WJ, Gong WF, Liu JG, Ma J, Cai CP, Zhu XF, Guo WZ, Du XM, Zhang TZ (2017b). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49, 1089-1098.
[9] Grover CE, Arick II MA, Thrash A, Conover JL, Sanders WS, Peterson DG, Frelichowski JE, Scheffler JA, Scheffler BE, Wendel JF (2019). Insights into the evolution of the new world diploid cottons (Gossypium, Subgenus Houzingenia) based on genome sequencing. Genome Biol Evol 11, 53-71.
[10] Grover CE, Pan MQ, Yuan DJ, Arick MA, Hu GJ, Brase L, Stelly DM, Lu ZF, Schmitz RJ, Peterson DG, Wendel JF, Udall JA (2020). The Gossypium longicalyx genome as a resource for cotton breeding and evolution. G3 10, 1457-1467.
[11] Hu Y, Chen JD, Fang L, Zhang ZY, Ma W, Niu YC, Ju LZ, Deng JQ, Zhao T, Lian JM, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han JL, Wang K, Wang Q, Wu HT, Mei GF, Zang YH, Han ZG, Xu CY, Shen WJ, Yang DF, Si ZF, Dai F, Zou LF, Huang F, Bai YL, Zhang YG, Brodt A, Ben-Hamo H, Zhu XF, Zhou BL, Guan XY, Zhu SJ, Chen XY, Zhang TZ (2019). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51, 739-748.
[12] Huang G, Wu ZG, Percy RG, Bai MZ, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu YX (2020). Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 52, 516-524.
[13] Hughes J (2013). Phytochrome cytoplasmic signaling. Annu Rev Plant Biol 64, 377-402.
[14] Johnson E, Bradley M, Harberd NP, Whitelam GC (1994). Photoresponses of light-grown phyA mutants of Arabidopsis (Phytochrome A is required for the perception of daylength extensions). Plant Physiol 105, 141-149.
[15] Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772-780.
[16] Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907-915.
[17] Kim YM, Kim S, Koo N, Shin AY, Yeom SI, Seo E, Park SJ, Kang WH, Kim MS, Park J, Jang I, Kim PG, Byeon I, Kim MS, Choi J, Ko G, Hwang J, Yang TJ, Choi SB, Lee JM, Lim KB, Lee J, Choi IY, Park BS, Kwon SY, Choi D, Kim RW (2017). Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. DNA Res 24, 71-80.
[18] Korunes KL, Samuk K (2021). Pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol Ecol Res 21, 1359-1368.
[19] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-327.
[20] Li JG, Li G, Wang HY, Deng X (2011). Phytochrome signaling mechanisms. Arabidopsis Book 9, e0148.
[21] Liao Y, Smyth GK, Shi W (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.
[22] Ma ZY, He SP, Wang XF, Sun JL, Zhang Y, Zhang GY, Wu LQ, Li ZK, Liu ZH, Sun GF, Yan YY, Jia YH, Yang J, Pan ZE, Gu QS, Li XY, Sun ZW, Dai PH, Liu ZW, Gong WF, Wu JH, Wang M, Liu HW, Feng KY, Ke HF, Wang JD, Lan HY, Wang GN, Peng J, Wang N, Wang LR, Pang BY, Peng Z, Li RQ, Tian SL, Du XM (2018). Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50, 803-813.
[23] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268-274.
[24] Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J (2016). RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade- avoidance pathways. BMC Plant Biol 16, 141.
[25] Peng H, Phung J, Zhai Y, Neff MM (2020). Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. Planta 252, 48.
[26] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290-295.
[27] Procter JB, Carstairs GM, Soares B, Mour?o K, Ofoegbu TC, Barton D, Lui L, Menard A, Sherstnev N, Roldan- Martinez D, Duce S, Martin DMA, Barton GJ (2021). Alignment of biological sequences with Jalview. In: KatohK,ed. Multiple Sequence Alignment:Methods and Protocols. New York: Humana. pp. 203-224.
[28] Purugganan MD, Fuller DQ (2009). The nature of selection during plant domestication. Nature 457, 843-848.
[29] Rao AQ, Irfan M, Saleem Z, Nasir IA, Riazuddin S, Husnain T (2011). Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B Biomed Biotechnol 12, 326-334.
[30] Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993). Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147-157.
[31] Saski CA, Scheffler BE, Hulse-Kemp AM, Liu B, Song QX, Ando A, Stelly DM, Scheffler JA, Grimwood J, Jones DC, Peterson DG, Schmutz J, Chen ZJ (2017). Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 7, 15274.
[32] Tian Y, Zhang TZ (2021). MIXTAs and phytohormones orchestrate cotton fiber development. Curr Opin Plant Biol 59, 101975.
[33] Udall JA, Long E, Hanson C, Yuan DJ, Ramaraj T, Conover JL, Gong L, Arick MA, Grover CE, Peterson DG, Wendel JF (2019a). De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri. G3 9, 3079-3085.
[34] Udall JA, Long E, Ramaraj T, Conover JL, Yuan DJ, Grover CE, Gong L, Arick II MA, Masonbrink RE, Peterson DG, Wendel JF (2019b). The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front Plant Sci 10, 1541.
[35] Wang MJ, Li JY, Wang PC, Liu F, Liu ZP, Zhao GN, Xu ZP, Pei LL, Grover CE, Wendel JF, Wang KB, Zhang XL (2021). Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol Biol Evol 38, 3621-3636.
[36] Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, Liu FY, Pei LL, Wang PC, Zhao GN, Ye ZX, Huang H, Yan FL, Ma YZ, Zhang L, Liu M, You JQ, Yang YC, Liu ZP, Huang F, Li BQ, Qiu P, Zhang QH, Zhu LF, Jin SX, Yang XY, Min L, Li GL, Chen LL, Zheng HK, Lindsey K, Lin ZX, Udall JA, Zhang XL (2019). Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51, 224-229.
[37] Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee TH, Jin HZ, Marler B, Guo H, Kissinger JC, Paterson AH (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40, e49.
[38] Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM (2009). Evolution and natural history of the cotton genus. In: PatersonAH,ed. Genetics and Genomics of Cotton. New York: Springer. pp. 3-22.
[39] Wendel JF, Cronn RC (2003). Polyploidy and the evolutionary history of cotton. Adv Agron 78, 139-186.
[40] Westengen OT, Huamán Z, Heun M (2005). Genetic diversity and geographic pattern in early South American cotton domestication. Theor Appl Genet 110, 392-402.
[41] Xie YR, Liu Y, Wang H, Ma XJ, Wang BB, Wu GX, Wang HY (2017). Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 8, 348.
[42] Yang ZE, Ge XY, Li WN, Jin YY, Liu LS, Hu W, Liu FY, Chen YL, Peng SL, Li FG (2021). Cotton D genome assemblies built with long-read data unveil mechanisms of centromere evolution and stress tolerance divergence. BMC Biol 19, 115.
[43] Yang ZR, Qanmber G, Wang Z, Yang ZE, Li FG (2020). Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci 25, 488-500.
[44] Yuan DJ, Grover CE, Hu GJ, Pan MQ, Miller ER, Conover JL, Hunt SP, Udall JA, Wendel JF (2021). Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci (Weinh) 8, 2003634.
[45] Zhang HK, Gao SH, Lercher MJ, Hu SN, Chen WH (2012). EvolView, an online tool for visualizing, annotating and ma- naging phylogenetic trees. Nucleic Acids Res 40, W569-W572.
[46] Zhang LL, Ma XK, Zhang XT, Xu Y, Ibrahim AK, Yao JY, Huang HX, Chen S, Liao ZY, Zhang Q, Niyitanga S, Yu JX, Liu Y, Xu XM, Wang JJ, Tao AF, Xu JT, Chen SY, Yang X, He QY, Lin LH, Fang PP, Zhang LM, Ming R, Qi JM, Zhang LW (2021). Reference genomes of the two cultivated jute species. Plant Biotechnol J 19, 2235-2248.
[47] Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29, 453-458.
[48] Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, Hulse- Kemp AM, Wan Q, Liu BL, Liu CX, Wang S, Pan MQ, Wang YK, Wang DW, Ye WX, Chang LJ, Zhang WP, Song QX, Kirkbride RC, Chen XY, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu XY, Zhang H, Wu HT, Zhou L, Mei GF, Chen SQ, Tian Y, Xiang D, Li XH, Ding J, Zuo QY, Tao LN, Liu YC, Li J, Lin Y, Hui YY, Cao ZS, Cai CP, Zhu XF, Jiang Z, Zhou BL, Guo WZ, Li RQ, Chen ZJ (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531-537.
Outlines

/