A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots
Received date: 2023-02-20
Accepted date: 2023-05-31
Online published: 2023-05-31
Chimeric soybean plants with transgenic hairy roots is very important for soybean functional genomics. In this study, we used three soybean genotypes to compare their hairy root induction rate and plant survival rate under different co-cultivation conditions. Our results showed that co-culturing the explants infected by Agrobacterium rhizogenes for 1 d under dark conditions was an effective strategy to induce hairy roots. We also found that removing the adventitious roots (AR) at hypocotyl significantly increased number of hairy roots, enhanced their growth and subsequently improved the positive rate of transgenic hairy roots. Furthermore, we found that the inoculation with rhizobium at 14 d of induction was able to enhance the contact between the bacteria and the transgenic hairy roots at early growth stages, and thus improved the soybean’s nodulation efficiency. Taken together, we successfully established a simple and efficient method to generate chimeric soybean plants with transgenic hairy roots. This method can be widely used in soybean gene functional studies.
Key words: soybean; hairy root; chimeric plant; nodulation; optimization
Jiaxin Chen , Hao Mei , Caixiang Huang , Zongyuan Liang , Yitong Quan , Dongpeng Li , Buweimaieryemu·Saimaiti , Xinxin Li , Hong Liao . A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots[J]. Chinese Bulletin of Botany, 2024 , 59(1) : 89 -98 . DOI: 10.11983/CBB23021
[1] | 程凤娴, 曹桂芹, 王秀荣, 赵静, 严小龙, 廖红 (2008). 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用. 科学通报 53, 2903-2910. |
[2] | 杜梦柯, 连文婷, 张晓, 李欣欣 (2021). 氮处理对大豆根瘤固氮能力及GmLbs基因表达的影响. 植物学报 56, 391-403. |
[3] | 李锦锦, 王昉, 张万科, 文自翔, 李海朝, 袁道华, 李金英, 张辉, 杨青华, 卢为国 (2012). 发根农杆菌介导不同基因型大豆转化效率的筛选. 河南农业科学 41(5), 37-41. |
[4] | 李欣欣, 赵静, 廖红 (2011). 大豆毛状根-VA菌根真菌双重培养体系的建立. 植物生理学报 47, 475-480. |
[5] | 栾健, 张斌, 胡钰 (2022). 中国大豆产业的发展态势、政策演进与趋势展望. 农业展望 18(8), 35-41. |
[6] | 邱丽娟, 王昌陵, 周国安, 陈受宜, 常汝镇 (2007). 大豆分子育种研究进展. 中国农业科学 40, 2418-2436. |
[7] | 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪 (2018). 我国大豆分子设计育种成果与展望. 中国科学院院刊 33, 915-922. |
[8] | Bahramnejad B, Naji M, Bose R, Jha S (2019). A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 37, 107405. |
[9] | Cheng YY, Wang XL, Cao L, Ji J, Liu TF, Duan KX (2021). Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17, 73. |
[10] | Cho HJ, Farrand SK, Noel GR, Widholm JM (2000). High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210, 195-204. |
[11] | Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH (2020). One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biol 20, 208. |
[12] | Gantait S, Mukherjee E (2021). Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Bio- technol 105, 35-53. |
[13] | Gomes C, Dupas A, Pagano A, Grima-Pettenati J, Paiva JAP (2019). Hairy root transformation: a useful tool to explore gene function and expression in Salix spp. recalcitrant to transformation. Front Plant Sci 10, 1427. |
[14] | Guo WB, Zhao J, Li XX, Qin L, Yan XL, Liao H (2011). A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66, 541-552. |
[15] | Herridge DF, Peoples MB, Boddey RM (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1-18. |
[16] | Huang PH, Lu MY, Li XB, Sun HY, Cheng ZY, Miao YC, Fu YF, Zhang XM (2022). An efficient Agrobacterium rhizogenes-mediated hairy root transformation method in a soybean root biology study. Int J Mol Sci 23, 12261. |
[17] | Hungria M, Mendes IC (2015). Nitrogen fixation with soybean:the perfect symbiosis? In: de Bruijn FJ, ed. Biological Nitrogen Fixation. New Jersey: Wiley. pp. 1005-1019. |
[18] | Ke XL, Xiao H, Peng YQ, Wang J, Lv Q, Wang XL (2022). Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science 378, 971-977. |
[19] | Kereszt A, Li DX, Indrasumunar A, Nguyen CDT, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007). Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2, 948-952. |
[20] | Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN (2021). Hairy CRISPR: genome editing in plants using hairy root transformation. Plants (Basel) 11, 51. |
[21] | Li R, Chen HF, Yang ZL, Yuan SL, Zhou XA (2020). Research status of soybean symbiosis nitrogen fixation. Oil Crop Sci 5, 6-10. |
[22] | Li XX, Zhao J, Tan ZY, Zeng RS, Liao H (2015). GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169, 2640-2653. |
[23] | Li XX, Zheng JK, Yang YQ, Liao H (2018). INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol 178, 1233-1248. |
[24] | Liu SL, Zhang M, Feng F, Tian ZX (2020). Toward a ‘‘green revolution’’ for soybean. Mol Plant 13, 688-697. |
[25] | Morey KJ, Peebles CAM (2022). Hairy roots: an untapped potential for production of plant products. Front Plant Sci 13, 937095. |
[26] | Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216, 723-735. |
[27] | Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010). Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698, 167-184. |
[28] | Qin L, Zhao J, Tian J, Chen LY, Sun ZA, Guo YX, Lu X, Gu M, Xu GH, Liao H (2012). The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159, 1634-1643. |
[29] | Wang T, Guo J, Peng YQ, Lyu X, Liu B, Sun SY, Wang XL (2021). Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science 374, 65-71. |
[30] | Wang XR, Wang YX, Tian J, Lim BL, Yan XL, Liao H (2009). Overexpressing AtPAP15enhances phosphorus efficiency in soybean. Plant Physiol 151, 233-240. |
[31] | Xu HY, Li YJ, Zhang KF, Li MJ, Fu SY, Tian YZ, Qin TF, Li XX, Zhong YJ, Liao H (2021). miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol 229, 3377-3392. |
[32] | Yang ZJ, Gao Z, Zhou HW, He Y, Liu YX, Lai YL, Zheng JK, Li XX, Liao H (2021). GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. Plant J 107, 525-543. |
[33] | Zhang FL, Chen C, Ge HL, Liu JM, Luo YL, Liu K, Chen L, Xu KD, Zhang Y, Tan GX, Li CW (2014). Efficient soybean regeneration and Agrobacterium-mediated transformation using a whole cotyledonary node as an explant. Biotechnol Appl Biochem 61, 620-625. |
/
〈 | 〉 |