Screening and Evaluation of Low-potassium Tolerance Potato Varieties
Received date: 2023-02-09
Accepted date: 2023-03-15
Online published: 2023-05-31
Soil potassium deficiency has severely reduced the potato field production in China. Fortunately, different potato varieties respond to low-potassium conditions very differently. Therefore, the utilization of potato varieties with low-potassium tolerance is an important approach to reduce potassium application by increasing potassium utilization efficiency, thus promoting the sustainability and the green development of agriculture in China. In this study, 17 biological features of 30 potato varieties were examined under normal potassium (202.5 kg∙hm-2 K2O) and low potassium conditions (0 kg∙hm-2 K2O), and nine representative features, including leaf area index, root-shoot ratio, shoot dry mass, root dry mass, tuber yield per plant, large tuber yield per plant, small tuber yield per plant, tuber dry mass, and tuber potassium accumulation were selected for subsequent analysis. The results showed that all feature values went down under the low potassium condition. Principal component analysis revealed that the nine features can be transformed into 4 independent comprehensive components, with a cumulative contributive rate of 87.1%. According to the comprehensive evaluation value (D value) and cluster analysis, the 30 varieties can be divided into 6 categories, including seven high tolerant varieties to low potassium: Lucinda, Favorita, Kexin1, Xisen6, Xingjia2, Helan15 and Chuanyin2, and six varieties with moderate tolerance to low potassium: Longshu20, Dingshu3, Jizhang12(W), Jiuen1, Longshu19, Jizhang12(Y). Furthermore, we developed a regression model Y=-0.595+0.247X5+0.155X4+0.138X3+0.167X8+0.088X1+0.081X6+0.097X9+ 0.053X2 (R2=0.999, P=0.000) to distinguish the 30 varieties from each other with an accuracy above 90%. In summary, under low potassium condition, several features, including tuber yield per plant, root dry mass, shoot dry mass, tuber dry mass, leaf area index, large tuber yield per plant, tuber potassium accumulation and root-shoot ratio can be used to rapidly identify low potassium tolerant varieties.
Yindu Liu , Junkang Tuo , Chengju Li , Feng Zhang , Chunli Zhang , Ying Zhang , Yunjiao Wang , Youfang Fan , Panfeng Yao , Chao Sun , Yuhui Liu , Zhen Liu , Zhenzhen Bi , Jiangping Bai . Screening and Evaluation of Low-potassium Tolerance Potato Varieties[J]. Chinese Bulletin of Botany, 2024 , 59(1) : 75 -88 . DOI: 10.11983/CBB23016
[1] | 杜培兵, 张永福, 白小东, 范向斌, 杨春, 齐海英, 王兴涛, 毛向红, 朱智慧 (2019). 主成分分析和隶属函数法对马铃薯品种抗旱性的评价. 种子 38(8), 120-126. |
[2] | 段惠敏, 王郁, 程李香, 撒刚, 夏露露, 张峰 (2023). 马铃薯块茎末端糖化适应性、稳定性及薯条加工型品种(系)筛选. 作物学报 49, 262-276. |
[3] | 国家统计局 (2021). 中国统计年鉴. 北京: 中国统计出版社. |
[4] | 郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环, 张建新, 饶米德, 刘鹏 (2022). 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系. 植物学报 57, 479-489. |
[5] | 韩新爱, 杨先泉, 杨世民, 王西瑶 (2007). 不同马铃薯品种(系)钾营养特性的差异. 四川农业大学学报 25, 392-396. |
[6] | 颉瑞霞, 张小川, 吴林科, 郭志乾, 张国辉, 余帮强 (2020). 马铃薯种质资源主要品质性状分析与评价. 分子植物育种 18, 6828-6836. |
[7] | 李登高, 林睿, 穆青慧, 周娜, 张焱如, 白薇 (2022). 马铃薯StCRKs基因家族的鉴定分析及响应逆境信号的表达. 植物研究 42, 1033-1043. |
[8] | 李晓云, 赵勇, 王杰, 杨学芳, 张树华, 杨学举 (2014). 不同小麦品系耐低钾性的综合评价. 麦类作物学报 34, 842-846. |
[9] | 李忠旺, 陈玉梁, 罗俊杰, 石有太, 冯克云, 陈子萱 (2017). 棉花抗旱品种筛选鉴定及抗旱性综合评价方法. 干旱地区农业研究 35, 240-247. |
[10] | 刘翠霞 (2006). 不同品种小麦耐低钾能力差异及筛选指标研究. 硕士论文. 郑州: 河南农业大学. pp. 12-36. |
[11] | 鲁如坤 (1989). 我国土壤氮、磷、钾的基本状况. 土壤学报 26, 280-286. |
[12] | 禄兴丽, 段雅欣, 李闪闪, 岳衡, 吴佳瑞, 刘继虎, 康建宏 (2021). 覆膜对半干旱地区马铃薯生长生理性状及作物产量的影响. 植物生理学报 57, 1582-1594. |
[13] | 罗兰, 邓振鹏, 吕长文 (2021). 不同基因型马铃薯钾素吸收与利用效率的差异. 中国马铃薯 35, 424-431. |
[14] | 罗曦, 吴方喜, 林强, 连玲, 何炜, 谢鸿光, 陈丽萍, 朱永生, 魏毅东, 蒋家焕, 谢华安, 张建福 (2019). 水稻苗期耐低钾品种筛选及相关性状的QTL定位. 植物遗传资源学报 20, 1262-1270. |
[15] | 穆俊祥, 曹兴明, 弓建国, 梁建功, 郭美兰 (2009). 氮磷钾和有机肥配合施用对马铃薯淀粉含量和产量的影响. 土壤 41, 844-848. |
[16] | 权月伟, 李喜焕, 常文锁, 张彩英 (2011). 大豆耐低钾种质资源筛选研究. 华北农学报 26(S1), 51-55. |
[17] | 史佳文, 潘峰, 陈若男, 石瑛 (2019). 不同马铃薯品种块茎钾含量与相关生理特性的钾素响应度差异. 华北农学报 34 (S1), 78-84. |
[18] | 孙慧, 王亚玲, 刘易, 李江涛, 邢斌德, 罗正乾, 冯怀章 (2021). 新疆地区马铃薯品种抗旱性比较及筛选. 西北农业学报 30, 1787-1796. |
[19] | 唐忠厚, 张允刚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋 (2014). 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报 40, 542-549. |
[20] | 万凯旋 (2020). 谷子耐低钾品种筛选及其生理生化研究. 硕士论文. 晋中: 山西农业大学. pp. 11-48. |
[21] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟 (2021). 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定. 草业学报 30, 186-199. |
[22] | 王晓斌, 王瀚, 胡开明, 李亚杰, 秦天元, 曾文婕, 李鑫, 张楷露, 张俊莲, 白江平 (2017). 基于层次分析法和GGE双标图对引进马铃薯种质资源的综合评价. 植物遗传资源学报 18, 1067-1078. |
[23] | 王旭东, 于振文, 王东 (2003). 钾对小麦茎和叶鞘碳水化合物含量及籽粒淀粉积累的影响. 植物营养与肥料学报 9, 57-62. |
[24] | 王燕, 杨克俭, 龚学臣, 祁利潘, 冯琰, 王磊, 刘畅, 尹江 (2016). 全国主栽马铃薯品种的抗旱性评价. 种子 35(9), 82-85. |
[25] | 王毅, 武维华 (2009). 植物钾营养高效分子遗传机制. 植物学报 44, 27-36. |
[26] | 熊增华, 王兴富, 王石军, 薛红魁 (2021). 我国硝酸钾产业发展现状与展望. 化工矿物与加工 50(5), 49-53. |
[27] | 许国春, 罗文彬, 李华伟, 许泳清, 纪荣昌, 张鸿, 邱思鑫, 汤浩 (2021). 马铃薯叶片光合效率遗传变异分析及高光效种质筛选. 园艺学报 48, 2239-2250. |
[28] | 徐丽娟, 王倩, 郑春花, 隋炯明, 刘光亮, 刘贯山 (2015). 烟草幼苗期耐低钾突变体的筛选及验证. 植物生理学报 51, 977-982. |
[29] | 杨春婷, 张永清, 马星星, 陈伟, 董璐, 张楚, 路之娟 (2018). 苦荞耐低磷基因型筛选及评价指标的鉴定. 应用生态学报 29, 2997-3007. |
[30] | 于国红, 刘朋程, 李磊, 李明哲, 崔海英, 郝洪波, 郭安强 (2022). 不同基因型马铃薯对干旱胁迫的生理响应. 生物技术通报 38(5), 56-63. |
[31] | 岳晓甜, 曲峻岭, 郭燕枝 (2016). 中国马铃薯产业现状、影响因素及对策初探. 农业展望 12(11), 55-58. |
[32] | 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 (2008). 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报 45, 915-924. |
[33] | 张婷婷, 于崧, 于立河, 李琳, 金珊珊, 郭建华, 张静 (2016). 松嫩平原春小麦耐盐碱性鉴定及品种(系)筛选. 麦类作物学报 36, 1008-1019. |
[34] | 张晓玲, 吕慧峰, 王菲, 唐静, 王正银, 毛国庆, 卢祥言, 沈云树, 许良兵, 朱斌 (2012). 重庆马铃薯土壤养分分级研究. 中国农学通报 28(21), 70-75. |
[35] | 张正社, 牛娜, 宋瑜龙, 马守才, 张改生, 王军卫 (2017). 耐低钾山羊草基因型的筛选与鉴定. 草地学报 25, 832-838. |
[36] | 赵霞, 杨豫龙, 王浩然, 穆心愿, 马智艳, 唐保军, 刘天学, 李潮海 (2019). 玉米苗期氮、磷、钾养分吸收利用效率研究. 玉米科学 27(4), 154-161, 166. |
[37] | 赵媛媛, 石瑛, 张丽莉 (2018). 马铃薯抗旱种质资源的评价. 分子植物育种 16, 633-642. |
[38] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局 (2017a). 食品安全国家标准食品中淀粉的测定(GB 5009.9-2016). 北京: 中国标准出版社. pp. 1-5. |
[39] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局 (2017b). 食品安全国家标准食品中蛋白质的测定(GB 5009.5-2016). 北京: 中国标准出版社. pp. 1-3. |
[40] | 邹春琴, 李振声, 李继云 (2002). 钾利用效率不同的小麦品种各生育期钾营养特点. 中国农业科学 35, 340-344. |
[41] | Busse JS, Wiberley-Bradford AE, Bethke PC (2019). Transient heat stress during tuber development alters post-harvest carbohydrate composition and decreases processing quality of chipping potatoes. J Sci Food Agric 99, 2579-2588. |
[42] | Cai J, Chen L, Qu HY, Lian J, Liu W, Hu YB, Xu GH (2012). Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol Plant 34, 939-946. |
[43] | Deng ZP, Yang J, Chen YY, Han HH, Liu X, Yi XP, Wang JC, Lyu CW (2021). Screening high potassium efficiency potato genotypes and physiological responses at different potassium levels. Not Bot Horti Agrobo 49, 12190. |
[44] | Grudzińska M, Boguszewska Mańkowska D, Zarzyńska K (2022). Drought stress during the growing season: changes in reducing sugars, starch content and respiration rate during storage of two potato cultivars differing in drought sensitivity. J Agron Crop Sci 208, 609-620. |
[45] | Kanai S, Ohkura K, Adu-Gyamfi JJ, Mohapatra PK, Nguyen NT, Saneoka H, Fujita K (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J Exp Bot 58, 2917-2928. |
[46] | Liu X, Chen L, Shi WL, Xu X, Li ZJ, Liu TF, He Q, Xie CH, Nie BH, Song BT (2021). Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem 334, 127550. |
[47] | Qin JH, Bian CS, Liu JG, Zhang JJ, Jin LP (2019). An efficient greenhouse method to screen potato genotypes for drought tolerance. Sci Hortic 253, 61-69. |
/
〈 | 〉 |