INVITED REVIEWS

Application and Prospect of Gene Editing in Forage Grass Breeding

Expand
  • State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2022-12-16

  Accepted date: 2023-04-18

  Online published: 2023-04-18

Abstract

Gene editing technology can manipulate the genome of organisms precisely and directionally. It is one of the most eye-catching subversive technologies in the field of life sciences, and has become the key technology in breeding of agriculture and animal husbandry. Recently, the demand for high-yield and high-quality forage grass are increasing in China, therefore, it is urgent to cultivate high-quality forage grass varieties with independent intellectual property rights. Here, we briefly reviewed the development of gene editing technology and its application in agricultural breeding, summarized the research progress in genome editing of gramineous and leguminous forage, and prospected the future direction of molecular module-based technology in forage grass breeding using genome editing.

Cite this article

Xian Deng, Tong Li, Xiaofeng Cao . Application and Prospect of Gene Editing in Forage Grass Breeding[J]. Chinese Bulletin of Botany, 2023 , 58(2) : 233 -240 . DOI: 10.11983/CBB22280

References

[1] 程星, 包爱科, 冯波, 王锁民 (2009). 百脉根基因工程研究进展. 生物技术通报 (4), 1-6, 28.
[2] 姜倩倩, 陈磊, 李正男, 尹启琳, 张立培, 赵吉强, 宋建成 (2021). 多年生黑麦草原生质体制备及瞬时表达体系的建立. 分子植物育种 19, 2941-2948.
[3] 麻冬梅, 郭林娜, 金凤霞, 李会文, 许兴 (2014). 多年生黑麦草多基因遗传转化体系的建立与优化. 中国草地学报 36, 13-17.
[4] 于东洋, 王凤梧, 融晓萍, 武志娟, 王鑫, 杨燕, 韩冰, 田青松 (2019). 利用CRISPR/Cas9技术对燕麦乙酰辅酶A羧化酶(ACCase)基因的编辑. 分子植物育种 17, 6356-6362.
[5] 张文静, 融晓萍, 田青松, 李婷婷, 武志娟, 刘慧艳, 韩冰 (2019). 利用CRISPR/Cas9技术对蒙古冰草落粒相关基因Sh1的编辑. 分子植物育种 17, 5021-5025.
[6] Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
[7] Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug II RG, Tan WF, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114-118.
[8] Chen HT, Zeng Y, Yang YZ, Huang LL, Tang BL, Zhang H, Hao F, Liu W, Li YH, Liu YB, Zhang XS, Zhang R, Zhang YS, Li YX, Wang K, He H, Wang ZK, Fan GY, Yang H, Bao AK, Shang ZH, Chen JH, Wang W, Qiu Q (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11, 2494.
[9] Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70, 667-697.
[10] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
[11] Gaj T, Gersbach CA, Barbas CF (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405.
[12] Gao CX (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
[13] Gao RM, Feyissa BA, Croft M, Hannoufa A (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247, 1043-1050.
[14] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017). Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature 551, 464-471.
[15] Hirosue T, Yamasue Y, Yabuno T (2000). Shattering habit and dormancy of spikelets in a cultivated form of Echinochloa oryzicola recently found in China. Weed Res 40, 449-456.
[16] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433.
[17] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
[18] Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
[19] Kuang LH, Shen QF, Chen LY, Ye LZ, Yan T, Chen ZH, Waugh R, Li Q, Huang L, Cai SG, Fu LB, Xing PW, Wang K, Shao JR, Wu FB, Jiang LX, Wu DZ, Zhang GP (2022). The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. Plant Commun 3, 100333.
[20] Li SN, Lin DX, Zhang YW, Deng M, Chen YX, Lv B, Li BS, Lei Y, Wang YP, Zhao L, Liang YT, Liu JX, Chen KL, Liu ZY, Xiao J, Qiu JL, Gao CX (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
[21] Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C (2018). Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160-1163.
[22] Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
[23] Nakamura M, Gao YC, Dominguez AA, Qi LS (2021). CRISPR technologies for precise epigenome editing. Nat Cell Biol 23, 11-22.
[24] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183.
[25] Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumar A, Singh D (2016). CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol Lett 38, 1991-2006.
[26] Shen C, Du HL, Chen Z, Lu HW, Zhu FG, Chen H, Meng XZ, Liu QW, Liu P, Zheng LH, Li XX, Dong JL, Liang CZ, Wang T (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13, 1250-1261.
[27] Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Gao ZF, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437-441.
[28] Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen GQ, Hannoufa A (2021). The CRISPR/Cas9-mediated modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in alfalfa leads to distinct phenotypic outcomes. Front Plant Sci 12, 774146.
[29] Song XG, Meng XB, Guo HY, Cheng Q, Jing YH, Chen MJ, Liu GF, Wang B, Wang YH, Li JY, Yu H (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol 40, 1403-1411.
[30] Symington LS, Gautier J (2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271.
[31] Wang LX, Wang LL, Tan Q, Fan QL, Zhu H, Hong ZL, Zhang ZM, Duanmu D (2016). Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7, 1333.
[32] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947-951.
[33] Wolabu TW, Cong LL, Park JJ, Bao QY, Chen M, Sun J, Xu B, Ge YX, Chai MF, Liu ZP, Wang ZY (2020). Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Front Plant Sci 11, 1063.
[34] Xie KB, Minkenberg B, Yang YN (2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
[35] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.
[36] Ye QY, Meng XZ, Chen H, Wu JL, Zheng LH, Shen C, Guo D, Zhao YF, Liu JL, Xue Q, Dong JL, Wang T (2022). Construction of genic male sterility system by CRISPR/ Cas9 editing from model legume to alfalfa. Plant Biotechnol J 20, 613-615.
[37] Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Cao CX, Liang CZ, Li JY (2021). A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
[38] Zeng DC, Liu TL, Ma XL, Wang B, Zheng ZY, Zhang YL, Xie XR, Yang BW, Zhao Z, Zhu QL, Liu YG (2020). Quantitative regulation of Waxy expression by CRISPR/ Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18, 2385-2387.
[39] Zhang YW, Ran YD, Nagy I, Lenk I, Qiu JL, Asp T, Jensen CS, Gao CX (2020). Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system. Plant Biotechnol J 18, 1854-1856.
[40] Zheng LH, Wen JQ, Liu JL, Meng XZ, Liu P, Cao N, Dong JL, Wang T (2022). From model to alfalfa: gene editing to obtain semidwarf and prostrate growth habits. Crop J 10, 932-941.
[41] Zhu HC, Li C, Gao CX (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21, 661-677.
Outlines

/

674-3466/bottom_en.htm"-->